Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study finds cancer-causing mineral in US road gravel

26.07.2011
Erionite in North Dakota roads may increase risk of mesothelioma

As school buses drive down the gravel roads in Dunn County, North Dakota, they stir up more than dirt. The clouds of dust left in their wake contain such high levels of the mineral erionite that those who breathe in the air every day are at an increased risk of developing mesothelioma, a type of cancer of the membranes around the lungs, new research shows.

Erionite is a natural mineral fiber that shares similar physical similarities with asbestos. When it's disturbed by human activity, fibers can become airborne and lodge themselves in people's lungs. Over time, the embedded fibers can make cells of the lung grow abnormally, leading to mesothelioma, a form of lung cancer most often associated with the related mineral asbestos.

Michele Carbone, M.D., Ph.D., director of the University of Hawaii Cancer Center in Honolulu, has previously linked erionite exposure in some Turkish villages to unusually high rates of mesothelioma. Recently, he and colleagues turned their attention to potential erionite exposure in the U.S., where at least 12 states have erionite-containing rock deposits. His research team—which includes scientists from the National Institute of Environmental Health Sciences, Environmental Protection Agency, New York University, University of Chicago, University of Iowa, and University of Hacettepe—focused their efforts on Dunn County, North Dakota, when they learned that rocks containing erionite have been used to produce gravel for the past 30 years. More than 300 miles of roads are now paved with the gravel. The new study, reported in the July 25, 2011 issue of Proceedings of the National Academy of Sciences (PNAS) is the first to look at the potential hazards associated with erionite exposure in the U.S.

The scientists compared the erionite in North Dakota to erionite from the Turkish villages with high mesothelioma rates. They measured airborne concentrations of the mineral in various settings, studied its chemical composition, and analyzed its biological activity. When mice were injected with the erionite from Dunn County, their lungs showed signs of inflammation and abnormal cell growth, precursors to mesothelioma. Under the microscope, the fiber size of the erionite from North Dakota was similar to that of the Turkish erionite. Overall, the researchers found no chemical differences between the North Dakota erionite and samples of the cancer-causing mineral from Turkey. The airborne levels of erionite in North Dakota were comparable to levels found in Turkish villages with 6-8 percent mortality rates from mesothelioma, the researchers reported.

"Based on the similarity between the erionite from the two sources," says Carbone, "there is concern for increased risk of mesothelioma in North Dakota." The long latency period of the disease—it can take 30 to 60 years of exposure to cause mesothelioma—and the fact that many erionite deposits have only been mined in the past few decades suggests that the number of cases could soon be on the rise. In addition to North Dakota, California, Oregon, Arizona, Nevada and other states have erionite deposit, but the possibility of human exposure elsewhere in the U.S. has not yet been investigated.

In contrast to asbestos, which causes mesothelioma at lower rates, there are no established health benchmarks in the U.S. on safe levels of erionite exposure, because until recently, physicians thought that erionate was present only in Turkey. The new findings, however, indicate that precautionary measures should be put in place to reduce exposure to the mineral, says Carbone. In Turkey, his earlier findings led to moving villagers away from areas with high levels of erionite, into new housing built out of erionite-free materials. "Our findings provide an opportunity to implement novel preventive and detection programs in the U.S. similar to what we have been doing in Turkey," he says. Future studies could analyze erionite levels in other areas of the U.S. and develop strategies to prevent and screen for mesothelioma. The study was funded through grants from the National Cancer Institute and the 2008 AACR-Landon Innovator Award for International Collaboration in Cancer Research to Michele Carbone.

Sharon Shigemasa | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Studies and Analyses:

nachricht Detecting mental and physical stress via smartphone
21.11.2019 | Politecnico di milano

nachricht Virtual "moonwalk" for science reveals distortions in spatial memory
18.11.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>