Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may explain why HIV progresses faster in women than in men with same viral load

15.07.2009
Pathways related to elevated immune activation could lead to new treatment strategies

One of the continuing mysteries of the HIV/AIDS epidemic is why women usually develop lower viral levels than men following acute HIV-1 infection but progress faster to AIDS than men with similar viral loads.

Now a research team based at the Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard has found that a receptor molecule involved in the first-line recognition of HIV-1 responds to the virus differently in women, leading to subsequent differences in chronic T cell activation, a known predictor of disease progression. Their paper, which will be published in an upcoming issue of Nature Medicine, is receiving early online release.

"This study may help to account for reported gender differences in HIV-1 disease progression by demonstrating that women and men differ in the way their immune systems respond to the virus," says Marcus Altfeld, MD, PhD, of the Ragon Institute and the MGH Division of Infectious Disease, the study's senior author. "Focusing on immune activation separately from viral replication might give us new therapeutic approaches to limiting HIV-1-induced pathology."

It has become apparent in recent years that HIV-1-infected patients with a high level of immune activation progress to AIDS more rapidly. Why this happens is an area of intense investigation. To explore whether gender-based differences in immune activation were responsible for faster disease progression in women, the Ragon Institute team and their collaborators focused on plasmacytoid dendritic cells (pDCs), among the first cells of the immune system to respond to HIV-1 and other viral pathogens. Earlier studies indicated that pDCs recognize HIV-1 using a receptor called Toll-like receptor 7 (TLR7), leading to production of interferon-alpha and other important immune system molecules.

After initial in vitro experiments showed that a higher percentage of pDCs from uninfected women produced interferon-alpha in response to TLR7 stimulation by HIV-1 than did cells from uninfected men, the researchers examined whether women's hormone levels had any effect on pDC activation. Supporting previous evidence that progesterone may modulate pDC activity, the researchers found that pDCs from postmenopausal women produced levels of interferon-alpha in response to HIV-1 that were closer to levels observed in men. They also found that, in premenopausal women, higher progesterone levels correlated with increased activation of pDCs in response to HIV-1.

Since it is known that the activation of T cells predicts the progression of HIV-1 infection to AIDS, the research team conducted a series of in vitro experiments showing that the stimulation of pDCs in response to HIV-1 led to the subsequent activation of CD8+ T cells by means of interferon-alpha secretion. They then tested blood samples taken from a group of chronically HIV-1-infected women and men prior to treatment initiation and confirmed that women had higher levels of CD8+ T cell activation than did men with the same blood levels of HIV-1.

"Taken together, these results support a model in which the same amount of virus induces stronger pDC activation in women than in men. While stronger activation of the immune system might be beneficial in the early stages of infection, resulting in lower levels of HIV-1 replication, persistent viral replication and stronger chronic immune activation can lead to the faster progression to AIDS that has been seen in women," Altfeld explains.

He adds that the study's results raise a number of important new questions, including exactly how sex hormones modulate the TLR7-mediated response of pDCs to HIV-1 and whether anti-TLR agents may help reduce immune activation in chronic HIV-1 infection. His team is beginning preliminary laboratory studies of the ability of TLR antagonists to reduce HIV-1-induced activation of pDCs.

Altfeld is an associate professor of Medicine at Harvard Medical School and director of the Innate Immunity Program at the Ragon Institute of MGH, MIT and Harvard. Co-lead authors of the Nature Medicine paper are Angela Meier, MD, PhD, and J. Judy Chang, PhD, of the Ragon Institute. Additional co-authors are Harlyn Sidhu, Tom Fang Wen, Robert Lindsay, Suzane Bazner, Hendrik Streeck, MD, and Galit Alter, PhD, Ragon Institute; Gregory Robbins, MD, MGH Division of Infectious Diseases; Ronald Bosch, PhD, Ellen Chan, PhD, and Liliana Orellana, Harvard School of Public Health; Richard Pollard, MD, University of California at Davis Medical Center; Smita Kulkarni, PhD, Jeffrey Lifson, MD, and Mary Carrington, PhD, National Cancer Institute; and Donna Mildvan, MD, Beth Israel Medical Center, New York. The study was supported by grants from the National Institute of Allergy and Infectious Diseases, the Harvard Center for AIDS Research, the Bill & Melinda Gates Foundation, the Doris Duke Charitable Foundation, and the National Cancer Institute.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>