Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study establishes importance of tracking diseases associated with illegal wildlife trade

11.01.2012
An article released today in PLoS ONE entitled, Zoonotic Viruses Associated with Illegally Imported Wildlife Products, from a collaborative study led by the U.S. Centers for Disease Control and Prevention (CDC), identified evidence of retroviruses and herpesviruses in illegally imported wildlife products confiscated at several U.S. international airports, including John F. Kennedy International Airport, George Bush Intercontinental-Houston and Atlanta Hartsfield-Jackson International.

The pilot program was initiated to establish surveillance and testing methods to uncover the potential public health risks from illegally imported wildlife products coming into the United States. The preliminary results of the program clearly demonstrate the potential human health risk from the illegal wildlife trade at major international travel hubs as a pathway to disease emergence in animals and humans.

Lead author and Associate Director for Health and Policy at EcoHealth Alliance, Dr. Kristine Smith, stated "although the findings to date are from a small pilot study, they remind us of the potential public health risk posed by illegal importation of wildlife products – a risk we hope to better characterize through expanded surveillance at ports of entry around the country."

"The increase in international travel and trade brings with it an increased risk of unmonitored pathogens via the illegal wildlife trade," said Dr. Denise McAloose, chief pathologist for the Global Health Program of the Wildlife Conservation Society (WCS). The global trade of wildlife has largely contributed to the emergence of new diseases in livestock, native wildlife and humans worldwide. Current research shows that 75 percent of emerging infectious diseases affecting people originate from contact with wildlife. These wildlife-borne diseases can be transmitted through human-animal interactions inherent in the global wildlife trade.

Items confiscated as part of the study included raw to semi-cooked animal parts, identified by American Museum of Natural History's Sackler Institute for Comparative Genomics, Columbia University, and WCS as nonhuman primates, including baboon and chimpanzee, and various rodent species using advanced genetic barcoding technologies. Pathogen analysis was conducted at the CDC National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention and Columbia University's Center for Infection and Immunity. Among the pathogens identified in the products were a zoonotic retrovirus, simian foamy viruses, and several nonhuman primate herpesviruses. These results are the first to confirm evidence of pathogens in illegally imported bushmeat that may act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the illegal wildlife trade will help facilitate prevention of disease emergence.

"Exotic wildlife pets and bushmeat are Trojan horses that threaten humankind at sites where they are collected in the developing world as well as the U.S. Our study underscores the importance of surveillance at ports, but we must also encourage efforts to reduce demand for products that drive the wildlife trade," said W. Ian Lipkin of Columbia University's Mailman School of Public Health. In fact, the U.S. is one of the largest consumers of imported wildlife products and wildlife. A previous study by EcoHealth Alliance showed that over a six-year period (2000-2006) approximately 1.5 billion live wild animals were legally imported into the U.S. – with 90 percent slated for the pet trade. Programs like the Centers for Disease Control and Prevention's Healthy Pets, Healthy People and EcoHealth Alliance's PetWatch encourage responsible exotic pet choices and ownership. U.S. Fish and Wildlife records show that more than 55 million pounds of wildlife products enter the country each year, with New York City the most common port of entry followed by Miami, and Los Angeles.

Beyond the public health risks of the live and non-live wildlife trade are risk of disease introduction to native wildlife and agricultural species, proliferation of non-native wildlife causing damage to U.S. ecosystems, as well as the protection of threatened and endangered species identified by the International Union for Conservation of Nature. "These important research results highlight the value of using new DNA barcoding identification technologies to accurately monitor the wildlife trade, important for both disease surveillance and the conservation of endangered species," stated Dr. George Amato from the Sackler Institute of Comparative Genomics at American Museum of Natural History.

The pilot study is the first to establish port surveillance methodology to test for diseases associated with wildlife products. Through better surveillance of illegal wildlife product shipments entering ports around the country, authorities will have a better chance at preventing new disease emergence before it occurs. The pilot project involved a collaboration of scientists from the American Museum of Natural History, Columbia University, EcoHealth Alliance, the USGS National Wildlife Health Center, and the Wildlife Conservation Society.

Anthony M. Ramos | EurekAlert!
Further information:
http://www.amnh.org/

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>