Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study to look at economics, groundwater use of bioenergy feedstocks

04.03.2011
Biofuel feedstock production in the Texas High Plains could significantly change the crop mix, which could affect regional income and groundwater consumption, according to Texas AgriLife Research and Texas AgriLife Extension Service economists.

Dr. Steve Amosson, AgriLife Extension economist in Amarillo, and Dr. Seong Park, AgriLife Research economist in Vernon, are joining other economists to model the socio-economic effects of climate change on the Ogallala Aquifer.

The project, Economics and Groundwater-Use Implications of Bioenergy Feedstocks Production in the Ogallala Aquifer Program Region, is funded by the Ogallala Aquifer federal research program of the U.S. Department of Agriculture-Agricultural Research Service.

"The High Plains' crops, livestock and meat processing sectors, as well as oil and gas production, literally run on water from the Ogallala Aquifer," Amosson said. "However, this region is facing an uncertain future, after significant pumping for the past 50 years has caused water tables to fall generally across the aquifer."

With water demand so strong and the aquifer serving as the primary source of that water, it is important to know how climate change and biofuels development in the future could affect availability, Amosson said.

"Projections of a warmer and drier future for this region threaten to raise cropping water needs and thus, the rate of aquifer depletion, while also lowering the natural recharge," he said. "The current biofuels policy and associated high commodity prices contribute additional pressures on those water resources."

The information generated from the study will present a comprehensive characterization of the economic and groundwater implications regarding allocation of limited agricultural land and water between crops and biofuel feedstock production, Amosson said. Then they can determine potential implications for farm income and regional activity.

Park said if more farmers begin producing a cellulosic feedstock or a drought-tolerant one, those changes would affect the Ogallala Aquifer water use.

"We want to look at the effects, look at the changes of land use, and see what the regional impact will be both economically and socially," he said. "In addition to the job creation aspect, we want to look at the environmental or carbon footprint as related to water use. We want to see what water consumption versus greenhouse gas production is."

"What if carbon emission rates change, how does that affect things?" Park said. "This is a key point for our stakeholders."

It will be important for producers to know how to adjust water use, cropping and land-use practices, and water-management practices to adapt to climate change and increasing agricultural demands to provide sustainability of the Ogallala Aquifer, he said.

Through the study, Park said, they hope to be able to outline the implications of climate change for the region and biofuel feedstock production possibilities.

They will look particularly at cellulosic production using perennial grasses such as switchgrass on marginal land with fewer inputs of water and fertilizers.

"We think this study will make a contribution to science addressing the issues of groundwater sensitivity to climate change that are explicitly called out as needing further work in the Intergovernmental Panel on Climate Change special report on water," Park said.

The two-year project began in January with the assimilation of information already gathered by the Intergovernmental Panel on Climate Change and local scientists, he said.

The plan is to develop over the next two years a dynamic multi-county land allocation model that integrates agriculture, hydrology, climate and geography, he said. This has already been completed for Dallam County, which is serving as the test county.

The economists will use land distribution of crops from 2009 as a baseline in each county, Park said. With that, they will calculate groundwater consumption and project the optimal land allocation or crop mix at the county level over the 2010-2050 period using IPCC climate change scenarios and projected regional mandates for crop ethanol production.

Another component of the study will include greenhouse gas emissions and carbon sequestration, based on the Forest and Agricultural Sector Optimization Model-Greenhouse Gas Version developed by a team led by Dr. Bruce McCarl, Nobel laureate and Texas A&M University Distinguished and Regents professor of agricultural economics.

"Once it is developed, this linked hydrological land-use regionalized groundwater model can be used to address a variety of future issues regarding land-use and water-use planning," Park said.

Dr. Seong Park | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>