Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study critiques corn-for-ethanol's carbon footprint

04.03.2009
To avoid creating greenhouse gases, it makes more sense using today's technology to leave land unfarmed in conservation reserves than to plow it up for corn to make biofuel, according to a comprehensive Duke University-led study.

"Converting set-asides to corn-ethanol production is an inefficient and expensive greenhouse gas mitigation policy that should not be encouraged until ethanol-production technologies improve," the study's authors reported in the March edition of the research journal Ecological Applications.

Nevertheless, farmers and producers are already receiving federal subsidies to grow more corn for ethanol under the Energy Independence and Security Act of 2007.

"One of our take-home messages is that conservation programs are currently a cheaper and more efficient greenhouse gas policy for taxpayers than corn-ethanol production," said biologist Robert Jackson, the Nicholas Professor of Global Environmental Change at Duke's Nicholas School of the Environment, who led the study.

Making ethanol from corn reduces atmospheric releases of the greenhouse gas carbon dioxide because the CO2 emitted when the ethanol burns is "canceled out" by the carbon dioxide taken in by the next crop of growing plants, which use it in photosynthesis. That means equivalent amounts of carbon dioxide are removed from the atmosphere and "fixed" into plant tissues.

But the study notes that some CO2 not counterbalanced by plant carbon uptake gets released when corn is grown and processed for ethanol. Furthermore, ethanol contains only about 70 percent of gasoline's energy.

"So we actually reduce greenhouse gas emissions only 20 percent when we substitute one liter of ethanol for one liter of gasoline," said Gervasio Piñeiro, the study's first author, who is a Buenos Aires, Argentina-based scientist and postdoctoral research associate in Jackson's Duke laboratory.

Also, by the researchers' accounting, the carbon benefits of using ethanol only begin to show up years after corn growing begins. "Depending on prior land use" they wrote in their report, "our analysis shows that carbon releases from the soil after planting corn for ethanol may in some cases completely offset carbon gains attributed to biofuel generation for at least 50 years."

The report said that "cellulosic" species -- such as switchgrass -- are a better option for curbing emissions than corn because they don't require annual replowing and planting. In contrast, a single planting of cellulosic species will continue growing and producing for years while trapping more carbon in the soil.

"Until cellulosic ethanol production is feasible, or corn-ethanol technology improves, corn-ethanol subsidies are a poor investment economically and environmentally," Jackson added.

However, the report noted that a cost-effective technology to convert cellulosics to ethanol may be years away. So the Duke team contrasted today's production practices for corn-based ethanol with what will be possible after the year 2023 for cellulosic-based ethanol.

By analyzing 142 different soil studies, the researchers found that conventional corn farming can remove 30 to 50 percent of the carbon stored in the soil. In contrast, cellulosic ethanol production entails mowing plants as they grow -- often on land that is already in conservation reserve. That, their analysis found, can ultimately increase soil carbon levels between 30 to 50 percent instead of reducing them.

"It's like hay baling," Piñeiro said. "You plant it once and it stays there for 20 years. And it takes much less energy and carbon dioxide emissions to produce that than to produce corn."

As part of its analysis, the Duke team calculated how corn-for-ethanol and cellulosic-for-ethanol production -- both now and in the future -- would compare with agricultural set-asides. Those comparisons were expressed in economic terms with a standard financial accounting tool called "net present value."

For now, setting aside acreage and letting it return to native vegetation was rated the best way to reduce greenhouse gas emissions, outweighing the results of corn-ethanol production over the first 48 years. However, "once commercially available, cellulosic ethanol produced in set-aside grasslands should provide the most efficient tool for greenhouse gas reduction of any scenario we examined," the report added.

The worst strategy for reducing carbon dioxide emissions is to plant corn-for-ethanol on land that was previously designated as set aside -- a practice included in current federal efforts to ramp up biofuel production, the study found. "You will lose a lot of soil carbon, which will escape into the atmosphere as CO2," said Piñeiro.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>