Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies Reveal How Cells Distinguish Between Disease-Causing and Innocuous Invaders

13.04.2012
The specific mechanisms by which humans and other animals are able to discriminate between disease-causing microbes and innocuous ones in order to rapidly respond to infections have long been a mystery to scientists. But a study conducted on roundworms by biologists at UC San Diego has uncovered some important clues to finally answering that question.

In a paper published in this week’s early online issue of the journal Cell Host & Microbe, the researchers discovered that intestinal cells in the roundworm C. elegans, which are similar in structure to those in humans, internalize bacterial toxins that inactivate several host processes. This then triggers an immune response, which results in the body mounting an immediate attack against the disease-causing microbes.


Green fluorescent proteins signify the expression of immune genes in the roundworm’s intestine. Credit: Troemel Lab, UC San Diego

“The human intestine is teeming with trillions of bacteria, most of which are innocuous, or even beneficial,” said Emily Troemel, an assistant professor of biology at UC San Diego who headed the study. “However, sometimes microbes cause disease, such as occurs in food poisoning.”

The UC San Diego study and two others published this week in the journals Cell and Cell Host & Microbe by research teams headed by Frederick Ausubel and Gary Ruvkun at the Massachusetts General Hospital and the Harvard Medical School, show that the way animal cells detect an attack by poisons or disease-causing bacteria is by monitoring the function of their own cells. If those cells detect a deficit in functions, the scientists discovered, they then trigger a variety of antibacterial or antitoxin responses against the invaders.

The roundworms proved to be the ideal laboratory model for these studies. Not only do they have intestinal cells that are similar in structure to human intestinal cells, but they are transparent and easy to maintain and study in lab.

“C. elegans provides a wonderful system in which to study questions of how humans and other animals defend themselves against attacks from disease-causing organisms,” said Troemel. “It lacks an adaptive immune system and, instead, relies solely on the evolutionarily ancient innate immune system to fight off attacks. Our findings in these roundworms may have uncovered a new ‘pathogen-specific’ branch of the innate immune system, which could function in humans as well.”
Troemel’s team of researchers—who included Tiffany Dunbar, Zhi Yan, Keir Balla and Margery Smelkinson—found in their experiments that a particular genetic system—the “ZIP-2 surveillance pathway”—was used by the roundworm in detecting an infection by the disease-causing bacterium Pseudomonas aeruginosa. The biologists also found that a specific toxin in the bacterium—“Exotoxin A”—blocks protein synthesis in the worm’s intestine.

“Surprisingly, this block leads to increased protein levels of the ZIP-2 transcription factor to ultimately induce expression of defense genes,” the scientists conclude in their paper. “Thus, a common form of pathogen attack acts to switch on host defense, allowing discrimination of pathogens from innocuous microbes.”

“In addition to P. aeruginosa Exotoxin A,” said Troemel, “there are several other bacterial toxins known to block protein synthesis, such as Diphtheria toxin, Ricin toxin and Shiga toxin. These toxins cause substantial impact on public health. For example, a recent epidemic outbreak of Shiga-toxin producing E. coli caused over 3000 cases of food poisoning in Germany leading to 39 deaths. Like Exotoxin A, these toxins can be internalized into the host cell to block protein synthesis. Perhaps the human intestine also monitors disruption of host protein synthesis to detect food poisoning, and induce a response similar to what is found in the C. elegans intestine.”

Troemel noted that it makes sense why animals have evolved systems that respond to core cellular dysfunction, rather than directly to specific toxins.

“We live in an environment filled with a wide variety of disease-causing organisms that can attack us using toxins,” she said. “While these toxins are diverse in structure, the manner by which they disrupt our cellular machinery can be very similar. Directly monitoring the functioning of our cellular machinery may provide the optimal system for early detection and response to unknown toxins or pathogens.”

The UC San Diego study was funded by the NIAID, Moores Cancer Center, Searle Scholars Program, Ray Thomas Edwards Foundation and David & Lucille Packard Foundation.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht How to design city streets more fairly
18.05.2020 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Insects: Largest study to date confirms declines on land, but finds recoveries in freshwater – Highly variable trends
24.04.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>