Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies demonstrate link among Alzheimer's disease, Down syndrome and atherosclerosis

18.01.2010
Studies implicate damage inflicted by amyloid protein as shared disease mechanism

Nearly 20 years ago Huntington Potter kicked up a storm of controversy with the idea that Down syndrome and Alzheimer’s were the same disease. Now the evidence is in: He was right.

And that’s not all. Down syndrome, artery-clogging cardiovascular disease, and possibly even diabetes, appear to share a common disease mechanism with Alzheimer’s disease, Dr. Potter and colleagues at the Florida Alzheimer’s Disease Research Center, USF Health Byrd Alzheimer’s Institute, recently reported.

The researchers’ two papers – one in Molecular Biology of the Cell and the other in PLoS ONE -- implicate the Alzheimer’s-associated protein beta amyloid (amyloid protein), which damages the microtubule transport system responsible for moving chromosomes, proteins and other cargo around inside cells. Both studies were done in mice and humans cell cultures modeling Alzheimer’s disease. Together, the laboratory discoveries suggest that protecting the microtubule network from this amyloid damage might be an effective way to prevent or even reverse Alzheimer’s disease and associated disorders.

The first paper, by Antoneta Granic and colleagues published online Dec. 23 in Molecular Biology of the Cell, provides the mechanism behind previous work by Dr. Potter’s laboratory showing that all Alzheimer’s disease patients harbor some cells with three copies of chromosome 21, known as trisomy 21, instead of the usual two. Trisomy 21 is a characteristic shared by all the cells in people with the birth defect Down syndrome. This earlier work demonstrated that Alzheimer’s disease could be considered a late onset form of Down syndrome.

By age 30 to 40, all people with Down syndrome develop the same brain pathology seen in Alzheimer’s disease, including a nerve-killing buildup of sticky amyloid protein clumps. This contributes to accelerated nerve cell loss and dementia.

With the study reported in MBC, Dr. Potter and his colleagues now show that the Alzheimer’s-associated amyloid protein is the culprit that interferes with the microtubule transport system inside cells. The microtubules are responsible for segregating newly duplicated chromosomes as cells divide. “Beta amyloid basically creates potholes in the protein highways that move cargo, including chromosomes, around inside cells,” said Dr. Potter, who holds the Eric Pfeiffer Endowed Chair for Research on Alzheimer’s Disease.

When the microtubule network is disrupted, chromosomes can be incorrectly transported as cells divide and the result is new cells with the wrong number of chromosomes and an abnormal assortment of genes. For example, Down syndrome cells contain three copies of the beta amyloid gene on chromosome 21 – leading to more accumulation of the “bad” amyloid protein over a lifetime, Dr. Potter says. “Alzheimer’s disease probably is caused in part from the continuous development of new trisomy 21 nerve cells, which amplify the disease process by producing extra beta amyloid.”

The second paper by lead author Jose Abisambra and colleagues, published Dec. 31 in the online journal PLoS ONE, describes another consequence of the damaged microtubule network caused by the amyloid protein.

Many Alzheimer’s disease patients also commonly develop vascular diseases and diabetes. Whether this coincidence is bad luck or due to shared disease processes is intensely debated. Research teams have investigated the role that low-density lipoprotein (LDL), the bad cholesterol that causes atherosclerosis, cardiovascular disease and stroke, may play in the development of Alzheimer’s with mixed results. However, the USF group focused on the amyloid protein’s potential effects on LDL metabolism. The receptor needed to detect and use LDL is among the proteins transported by the microtubules.

As previously reported by their colleagues in the MBC paper, the second USF team found that the amyloid protein inflicts damage to the microtubule network. As a consequence, the receptor needed to pull LDL circulating throughout the bloodstream into the body’s cells has trouble getting to the cell surface to retrieve this bad cholesterol. This interference with LDL metabolism may allow bad cholesterol to build up in into plaques that choke off blood supply to the brain and heart in people with Alzheimer’s, Dr. Potter said.

Similarly, other key proteins – including insulin receptors and receptors for brain signaling molecules -- are also likely locked inside cells when the transport system is damaged by amyloid or other factors. “The insulin receptors are needed to get blood sugar inside the cell where it can be used for energy. The nerve cell signaling receptors help promote memory and learning,” Dr. Potter said. “So, if these receptors are unable to function properly, it may lead to diabetes and problems with learning and memory.”

“We’re beginning to understand how conditions like cardiovascular disease and diabetes may manifest some of the same underlying disease processes as Alzheimer’s disease,” he said, “rather than being independent diseases that just happen to develop in the same patient.”

The studies were supported by funds from the USF Health Byrd Alzheimer’s Institute, the Eric Pfeiffer Chair for Research on Alzheimer’s Disease, and the National Institute on Aging, sponsor of the statewide Florida Alzheimer’s Disease Research Center at the University of South Florida.

Journal articles cited:

1. “Alzheimer Ab Peptide Induces Chromosome Mis-segregation and Aneuploidy, including Trisomy 21; Requirement for Tau and APP,” Antoneta Granic, Jaya Padmanabhan, Michelle Norden, and Huntington Potter. Molecular Biology of the Cell, Dec. 23, 2009.

2. “LDLR Expression and Localization Are Altered in Mouse and Human Cell Culture Models of Alzheimer’s Disease,” Jose Abisambra, Tina Fiorella, Jaya Padmanabhan, Peter Neame, Inge Wefes, and Huntington Potter, PLoS ONE, Volume 5, Issue 1. (January 2010).

- USF Health –
USF Health (www.health.usf.edu) is dedicated to creating a model of health care based on understanding the full spectrum of health. It includes the University of South Florida’s colleges of medicine, nursing, and public health; the schools of biomedical sciences as well as physical therapy & rehabilitation sciences; and the USF Physicians Group. With more than $380.4 million in research grants and contracts last year, the University of South Florida is one of the nation’s top 63 public research universities and one of only 25 public research universities nationwide with very high research activity that is designated as community-engaged by the Carnegie Foundation for the Advancement of Teaching.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.usf.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>