Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Would you stop eating out to lose weight?

10.01.2012
A study reveals that you don't have to

Going out to eat has become a major part of our culture. Frequently eating out and consuming high-calorie foods in large portions at restaurants can contribute to excess calorie intake and weight gain. However, a study in the January/February 2012 issue of the Journal of Nutrition Education and Behavior demonstrates that individuals can eat out and still lose weight.

Investigators from The University of Texas at Austin enrolled 35 healthy, perimenopausal women aged 40 to 59 years who eat out frequently. Participants took part in a 6-week program called Mindful Restaurant Eating, a weight-gain prevention intervention that helps develop the skills needed to reduce caloric and fat intake when eating out. The focus of the program was on preventing weight gain in this population, not weight loss. It is important to prevent weight gain in this population as increasing abdominal waist circumference from weight gain is greater during the perimenopausal years, which in turn increases the risk for cardiovascular disease and diabetes. Even though the focus was on weight maintenance, the researchers found that participants in the intervention group lost significantly more weight, had lower average daily caloric and fat intake, had increased diet related self-efficacy, and had fewer barriers to weight management when eating out.

Dr. Gayle M. Timmerman, PhD, RN, the principal investigator of this study states, "Although the intention of the intervention was weight maintenance and the majority of participants were not dieting with the intent to lose weight at the start of the study (69%), on average the intervention group lost 1.7 kg during 6 weeks. The number of times that participants ate out, as captured in the 3-day 24-hour recalls, did not significantly decrease from time 1 to time 2, indicating that participants were able to successfully manage their weight while continuing their usual, frequent eating-out patterns. Overall, the participants in the intervention group reduced their daily caloric intake by about 297 calories after completing the intervention, which would explain their weight loss. Only part of the calorie reduction (about 124 calories) can be accounted for during eating out, indicating that fewer calories were also consumed at home."

"Based on what we learned from this study, for those individuals who eat out frequently, developing the skills needed to eat out without gaining weight from the excess calories typically consumed at restaurants may be essential to long-term health," Dr. Timmerman concludes.

This study addresses the importance of developing creative solutions in preventing weight gain; developing restaurant eating skills to manage intake in the high risk restaurant food environment may be one of those solutions.

The article is "The Effect of a Mindful Restaurant Eating Intervention on Weight Management in Women," by Gayle M. Timmerman, PhD, RN and Adama Brown, PhD. It appears in the Journal of Nutrition Education and Behavior, Volume 44, Issue 1 (January/February 2012) published by Elsevier.

In an accompanying podcast, Gayle M. Timmerman, PhD, RN, discusses the results and implications of this study. It is available at www.jneb.org/content/podcast.

Francesca Costanzo | EurekAlert!
Further information:
http://www.elsevier.com
http://www.jneb.org/content/podcast

Further reports about: Eating Disorder Nutrition daily caloric lose weight weight gain weight loss

More articles from Studies and Analyses:

nachricht New study shows nanoscale pendulum coupling
05.07.2019 | University of Barcelona

nachricht New unprinting method can help recycle paper and curb environmental costs
26.06.2019 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>