# Forum for Science, Industry and Business

Search our Site:

## Statistical method developed at TU Dresden allows the detection of higher order dependencies

07.02.2020

In December, the academic publisher De Gruyter launched its new journal “Open Statistics” with an opening article by TU Dresden mathematician Dr. Björn Böttcher. The article presents the extension of the statistical measure "distance multivariance" developed by Böttcher and his colleagues at TU Dresden.

Distance multivariance is a multivariate dependence measure, which can detect dependencies between an arbitrary number of random vectors each of which can have a distinct dimension. In his new article, Böttcher now presents the concept as a unifying theory that combines several classical dependence measures.

Full-dependence-structure.

(c) Björn Böttcher

Connections between two or more high-dimensional variables can be captured and even complicated non-linear dependencies as well as dependencies of higher order can be detected. For numerous scientific disciplines, this method opens up new approaches to detect and evaluate dependencies.

Can the number of missed school days be linked to the age, gender or origin of school students? In a survey of 146 school students, social scientists analysed various influencing variables on missed school days and examined them for dependencies in order to derive a prediction model. This classic question has already been widely discussed and analysed with various statistical approaches.

The statistical measure "distance multivariance" presents a novel approach to this question: Dr. Björn Böttcher from the Institute of Mathematical Stochastics was able to use distance multivariance to determine the cultural background and a higher order dependence including age and gender as influencing factors for the missed school days. He thus was able to suggest a minimal model.

"This is an elementary example for an application of the developed method. I cannot judge whether this is also a substantiated finding with regard to the investigated question. Working with real data and especially the subject-specific interpretation of the results always requires expertise in the respective subject," Dr. Böttcher emphasizes and provides numerous other illustrative examples of the application of his method:

"In the paper, I refer to more than 350 freely available data sets from all scientific disciplines in which statistically significant higher-order dependencies occur. Again, whether these dependencies are meaningful in terms of the underlying surveys requires further investigations as well as the expertise in the respective fields," and he adds, "of course, requests for cooperation are always welcome."

Statistical analysis usually considers dependencies between individual variables. Especially with many variables, it is desirable to remove independent variables prior to studying any specific types of dependence.

Dr. Björn Böttcher presents a method for this purpose called "dependence structure detection", which can also be used to detect higher-order dependencies. Variables are called "higher-order dependent", if they are pairwise independent, but more than two variables still influence each other jointly. Dependencies of this kind have not been in the focus of applications so far.

Some scientists suspect that higher-order dependencies occur in genetics in particular: the basic idea here is that several genes together determine a property, but these genes show neither individually any dependence among each other nor individually with the property – thus indeed these would be higher-order dependent. The framework of "distance multivariance" and the "dependence structure detection" method are now promising tools for such investigations.

Implementations of the new methods are provided for direct applications in the package 'multivariance' for the free statistical computing environment 'R'

### Wissenschaftliche Ansprechpartner:

Dr. Björn Böttcher
Institute of Mathematical Stochastics
Tel. +49 351 463-32423
Email: bjoern.boettcher@tu-dresden.de

### Originalpublikation:

B. Böttcher, Dependence and dependence structures: estimation and visualization using the unifying concept of distance multivariance, Open Statistics, Volume 1, Issue 1. Pages 1-46, ISSN (Online) 2657-3601, DOI: https://doi.org/10.1515/stat-2020-0001.

Kim-Astrid Magister | Technische Universität Dresden

Further reports about: Dependencies Distance multivariance Statistical data investigations

### More articles from Studies and Analyses:

Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

TU Dresden biologists examine sperm quality on the basis of their metabolism
29.11.2019 | Technische Universität Dresden

### Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

### Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

### Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

### Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

### Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige