Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford brain imaging study shows physiological basis of dyslexia

29.09.2011
Researchers at the Stanford University School of Medicine have used an imaging technique to show that the brain activation patterns in children with poor reading skills and a low IQ are similar to those in poor readers with a typical IQ. The work provides more definitive evidence about poor readers having similar kinds of difficulties regardless of their general cognitive ability.

Schools and psychologists have historically relied on a child's IQ to define and diagnose dyslexia, a brain-based learning disability that impairs a person's ability to read: If a child's reading achievement was below expectation based on IQ, he would be considered dyslexic, while a poor reader with a low IQ would receive some other diagnosis. But these new findings provide "biological evidence that IQ should not be emphasized in the diagnosis of reading abilities," said Fumiko Hoeft, MD, Ph.D, an instructor at Stanford's Center for Interdisciplinary Brain Sciences Research, who is senior author of the study, which will appear in an upcoming issue of Psychological Science.

The new results come in the wake of recent behavioral studies showing that phonological deficits -- that is, difficulties in processing the sound system of language, which often leads to difficulties in connecting the sounds of language to letters -- are similar in poor readers regardless of IQ. Indeed, the 2004 reauthorization of the Individuals with Disabilities Education Act mandated that states no longer require school districts to use IQ tests in identifying individuals with learning disabilities such as dyslexia.

"There's a disassociation between what is established in research and what is happening in practice," said Hoeft, explaining that many U.S. schools still rely on a discrepancy between reading achievement and IQ to define and diagnose dyslexia. At first glance, she added, it would seem to make sense that poor readers with typical IQs would have different learning challenges than those with low ones.

The use of IQ in diagnosing dyslexia, which affects 5 to 17 percent of U.S. children, has real implications for poor readers. If children aren't diagnosed as dyslexic, they don't qualify for services that a typical dyslexic does, and they're not taught strategies to overcome specific problems in the way they view and process words.

To further understand what happens in the brains of poor readers with different IQs, Hoeft turned to imaging. She and her colleagues expected poor readers with typical IQs to exhibit similar patterns of brain activation as poor readers with low IQs. Their experiments, she said, were intended to confirm that the two groups had the same neurophysiological basis for impaired phonological processing and that their reading problems were not related to IQ.

The study involved 131 children, ranging from 7 to 16 years old, from Allegheny County, Penn., and the San Francisco Bay Area. The children were put into three groups: poor readers with typical IQ, poor readers with low IQ and typical readers with typical IQ. The children then took a reading test and underwent a brain-imaging technique called functional magnetic resonance imaging, or fMRI, as they completed a task that involved judging whether two visually presented words rhymed (e.g., bait and gate) or not (e.g., price or miss).

In both samples, the typical readers had significantly higher reading-related scores and more accurate performance on the rhyme-judgment task than the two other groups. And there were no significant differences between the two groups of poor readers on these measures.

In the fMRI analysis, researchers found that both groups of poor readers exhibited significantly reduced activations relative to typical readers in the left inferior parietal lobule and left fusiform gyrus. The researchers also used a sophisticated analysis to determine that the brain patterns of each group of poor readers looked liked those of the other group of poor readers more than 80 percent of the time, and did not often resemble the patterns from the normal readers.

Hoeft noted that the results are timely. The Diagnostic and Statistical Manual of Mental Disorders, the standard diagnostic guide for mental illnesses and brain disorders, is currently being revised, and there is a proposal to change it so that IQ wouldn't be taken into consideration when diagnosing dyslexia. (The new version, DSM V, will be released in 2013.) This work, she said, is the, "first study reporting biological neuroimaging evidence to support" that change.

"Convergent psychological, educational and now neurobiological evidence suggests that the long-standing and widely applied diagnosis of dyslexia by IQ discrepancy is not supported," the researchers wrote in the paper.

Hoeft and her colleagues also point out that these and other findings indicate that, "any child with a reading difficulty, regardless of his or her general level of cognitive abilities (IQ), should be encouraged to seek reading intervention."

Hoeft said she will continue her work in this area and is hoping to use imaging to predict outcomes of poor readers. She also plans to look at younger readers to see if imaging can be used to diagnose children at younger ages.

The study's two lead authors are Stanford graduate student Hiroko Tanaka and Jessica Black, Ph.D, of Boston College. The other Stanford co-authors are graduate student Leanne Stanley; Shelli Kesler, Ph.D, assistant professor of psychiatry and behavioral sciences; and Allan Reiss, MD, the Howard C. Robbins Professor of Psychiatry and Behavioral Sciences, a professor of radiology and the director of Stanford's Center for Interdisciplinary Brain Sciences Research. Researchers from the Massachusetts Institute of Technology are also co-authors.

The work was supported by the William and Flora Hewlett Foundation, Richard King Mellon Foundation, Ellison Medical Foundation, National Institute of Child Health and Human Development, Lucile Packard Foundation for Children's Health, Spectrum Child Health & Clinical and Translational Science Award, Dyslexia Foundation and the National Alliance for Research in Schizophrenia and Depression.

Information about the Department of Psychiatry and Behavioral Sciences, which also supported the research, is available at http://psychiatry.stanford.edu/.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu.

The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

PRINT MEDIA CONTACT:
Michelle Brandt
650-723-0272
mbrandt@stanford.edu
BROADCAST MEDIA CONTACT
M.A. Malone
650-723-6912
mamalone@stanford.edu

Michelle Brandt | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: Brain Brain Sciences IQ test IQs Medicine Psychiatry behavioral health services

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>