Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stabilizing sulfur cathode by single Li-ion channel polymer binder

25.11.2019

The growing demands on the high-performance energy-storage system for emerging technologies such as electric vehicles and artificial intelligence drive the development of high-performance batteries. As a promising candidate of next-generation batteries, Li-S batteries have been drawn much attention carrying a high specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1). However, the diffusion of polysulfide in electrolyte cause changes in the structure of the sulfur cathode during discharge-charge cycles, which greatly limits the commercial applications of Li-S batteries.

Polymer binder, as an essential component of electrode, acts to bond the active material and are related to the performance of batteries. Unfortunately, the conventional binder has failed to meet the requirements of emerging batteries.


(A) Schematic diagrams of the formation of the polymer with the single-ion channels. (B) Schematic diagrams of single-ion channels regulate the polysulfide and Li-ion hopping.

Credit: ©Science China Press

For example, the PVDF binder exhibits low ionic conductivity of Li-ions, poor mechanical stability, and almost none inhibition on the shuttle of polysulfide, these factors limit the applications of Li-S batteries. Therefore, an ideal polymer binder which overcomes the drawback of conventional binders is urgently needed for Li-S batteries.

In a new research published in the Beijing-based National Science Review, scientists at the Soochow Institute for Energy and Materials Innovations for Lithium-sulfur battery in Suzhou, China present the latest advances in Single Lithium-ion Channel Polymer Binder for Li-S battery.

Co-authors Chaoqun Niu, Jie Liu, Xiaowei Shen, Jinqiu Zhou, Tao Qian and Chenglin Yan report a novel polymer binder with single lithium-ions channels allowing fast lithium-ions transport while blocking the shuttle of polysulfide anions. This study reports a new avenue to assemble a polymer binder with single lithium-ion channel for solving the serious problem of energy attenuation of Li-S batteries.

These scientists confirme the effect of the prepared polymer binder on Li-S batteries by monitoring polysulfide concentration in the electrolyte and device capacity retention in real time during the cycle. "The polymer binder is confirmed to effectively immobilize the shuttle effect of polysulfide intermediates by the in-situ UV-vis measurement."

"Moreover, the excellent adhesion and mechanical stability of prepared binder maintain the structure integrity of sulfide cathode after discharge-charge cycles. These results demonstrate that the promising improvement of Li-S battery by the prepared binder and we believe the reported polymer binder with single Li-ion channels is one of the most effective strategies for the high-energy Li-S batteries."

###

This work was supported by National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province and Natural Science Foundation of Jiangsu Higher Education Instituions of China.

See the article:

Chaoqun Niu, Jie Liu, Xiaowei Shen, Jinqiu Zhou, Tao Qian and Chenglin Yan
Single Lithium-ion Channel Polymer Binder for Stabilizing Sulfur Cathodes
Natl Sci Rev 2019; https://doi.org/10.1093/nsr/nwz149

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact

Chenglin Yan
c.yan@suda.edu.cn

http://www.scichina.com/ 

Chenglin Yan | EurekAlert!

Further reports about: Li-ions battery cathode electrode polymer binder single lithium-ions channels

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shock-dissipating fractal cubes could forge high-tech armor

08.07.2020 | Materials Sciences

Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents

08.07.2020 | Health and Medicine

'Growing' active sites on quantum dots for robust H2 photogeneration

08.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>