Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snow in the Arctic: an ingredient in a surprising chemical cocktail

10.11.2008
In the Arctic in spring, the snow cover gives off nitrogen oxides. This phenomenon, the extent of which had not been previously realized, is the source of one third of the nitrates present in the Arctic atmosphere, according to researchers from CNRS, the Université Joseph Fourier and the Université Pierre et Marie Curie[1].

They made a quantitative study of the origin and evolution of nitrogen compounds in the Arctic atmosphere, in order to understand their environmental impact on this region. These findings are published in the 31 October 2008 issue of the journal Science.

In the Arctic, the snow that covers the land mass and the pack ice is a constant source of new surprises for researchers. One of the major players in climate change, it is also closely monitored by atmospheric chemists, who suspect it of being behind fundamental alterations in atmospheric composition in spring, when sunshine returns.

The researchers had already studied episodes of total destruction of ozone at the surface of the Arctic snow cover [2] as well as the role played by this cover in the dangerous mercury 'rain' that pollutes ecosystems [3]. This time they were interested in the ability of the arctic snow cover to interact with nitrogen compounds such as nitrogen oxides and atmospheric nitrate.

At temperate latitudes nitrogen oxides are produced not only by natural phenomena such as lightning and forest fires, but also by human activity, such as combustion in engines and industrial activity. They are the cause of the peaks in ozone concentration observed on the outskirts of cities during episodes of high pollution. Nitrogen oxides are rapidly oxidized to nitrate, which, incorporated into atmospheric particulate matter, is transported by air currents, bringing surplus nitrogen to distant ecosystems.

In the Arctic, in autumn, winter and spring, the nitrate is deposited onto the snow cover. Then, when the snow is exposed to solar radiation, the nitrate turns into nitrogen oxides that are emitted to the atmosphere, causing disturbances in Arctic atmospheric chemistry. However, the extent of this phenomenon remained to be quantified.

By measuring the isotopic composition of the nitrogen and oxygen in the atmospheric nitrate collected in the Canadian Arctic (Alert station, Nunavut)[4], the researchers have shown that the 'recycling' of nitrate deposited on the snow of the Arctic pack ice returns nitrogen oxides to the atmosphere in substantial quantities. For instance, in spring, nearly one third of the Arctic atmospheric nitrate comes from emissions of nitrogen oxides from the snow cover, while the rest comes directly from atmospheric transport from middle latitudes. The researchers also show that there are strong chemical interactions between the nitrogen oxides emitted by the snow cover and the halogenated compounds (in particular BrO radicals) that are involved in the phenomena of ozone destruction in the lower levels of the atmosphere in spring.

This study highlights the close links between the climate system (ice surfaces, snow-covered surfaces, temperatures, and percentage of solar radiation reaching the Earth's surface) and the presence of highly reactive pollutants in the Arctic atmosphere (nitrogen oxides, ozone, and particulate matter emitted by human activity). It shows the need for a global approach to environmental problems, calling for long-term monitoring and the use of new techniques for analyzing processes.

The work was funded by CNRS's National Institute of Earth Sciences and Astronomy (INSU), the Institut Polaire - Paul Émile Victor (IPEV) and by a European Science Foundation program (EUROCORE-EuroCLIMATE).

[1] Laboratoire de glaciologie et de géologie de l’environnement (CNRS/Université Joseph Fourier), Laboratoire d’étude des transferts en hydrologie et environnement (CNRS/Université Joseph Fourier/Institut polytechnique de Grenoble), Service d'aéronomie (CNRS/Université Pierre et Marie Curie/Université Versailles Saint Quentin)

[2] http://www.insu.cnrs.fr/a2131,nouvelle-loupe-isotopique-chimie-ozone-arctique.html

[3] http://www2.cnrs.fr/presse/journal/1416.htm

[4] by the Meteorological Service of Canada ( Global Atmospheric Watch program, coordinated by the World Meteorological Organization).

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr
http://www.upmc.fr

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>