Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snow in the Arctic: an ingredient in a surprising chemical cocktail

10.11.2008
In the Arctic in spring, the snow cover gives off nitrogen oxides. This phenomenon, the extent of which had not been previously realized, is the source of one third of the nitrates present in the Arctic atmosphere, according to researchers from CNRS, the Université Joseph Fourier and the Université Pierre et Marie Curie[1].

They made a quantitative study of the origin and evolution of nitrogen compounds in the Arctic atmosphere, in order to understand their environmental impact on this region. These findings are published in the 31 October 2008 issue of the journal Science.

In the Arctic, the snow that covers the land mass and the pack ice is a constant source of new surprises for researchers. One of the major players in climate change, it is also closely monitored by atmospheric chemists, who suspect it of being behind fundamental alterations in atmospheric composition in spring, when sunshine returns.

The researchers had already studied episodes of total destruction of ozone at the surface of the Arctic snow cover [2] as well as the role played by this cover in the dangerous mercury 'rain' that pollutes ecosystems [3]. This time they were interested in the ability of the arctic snow cover to interact with nitrogen compounds such as nitrogen oxides and atmospheric nitrate.

At temperate latitudes nitrogen oxides are produced not only by natural phenomena such as lightning and forest fires, but also by human activity, such as combustion in engines and industrial activity. They are the cause of the peaks in ozone concentration observed on the outskirts of cities during episodes of high pollution. Nitrogen oxides are rapidly oxidized to nitrate, which, incorporated into atmospheric particulate matter, is transported by air currents, bringing surplus nitrogen to distant ecosystems.

In the Arctic, in autumn, winter and spring, the nitrate is deposited onto the snow cover. Then, when the snow is exposed to solar radiation, the nitrate turns into nitrogen oxides that are emitted to the atmosphere, causing disturbances in Arctic atmospheric chemistry. However, the extent of this phenomenon remained to be quantified.

By measuring the isotopic composition of the nitrogen and oxygen in the atmospheric nitrate collected in the Canadian Arctic (Alert station, Nunavut)[4], the researchers have shown that the 'recycling' of nitrate deposited on the snow of the Arctic pack ice returns nitrogen oxides to the atmosphere in substantial quantities. For instance, in spring, nearly one third of the Arctic atmospheric nitrate comes from emissions of nitrogen oxides from the snow cover, while the rest comes directly from atmospheric transport from middle latitudes. The researchers also show that there are strong chemical interactions between the nitrogen oxides emitted by the snow cover and the halogenated compounds (in particular BrO radicals) that are involved in the phenomena of ozone destruction in the lower levels of the atmosphere in spring.

This study highlights the close links between the climate system (ice surfaces, snow-covered surfaces, temperatures, and percentage of solar radiation reaching the Earth's surface) and the presence of highly reactive pollutants in the Arctic atmosphere (nitrogen oxides, ozone, and particulate matter emitted by human activity). It shows the need for a global approach to environmental problems, calling for long-term monitoring and the use of new techniques for analyzing processes.

The work was funded by CNRS's National Institute of Earth Sciences and Astronomy (INSU), the Institut Polaire - Paul Émile Victor (IPEV) and by a European Science Foundation program (EUROCORE-EuroCLIMATE).

[1] Laboratoire de glaciologie et de géologie de l’environnement (CNRS/Université Joseph Fourier), Laboratoire d’étude des transferts en hydrologie et environnement (CNRS/Université Joseph Fourier/Institut polytechnique de Grenoble), Service d'aéronomie (CNRS/Université Pierre et Marie Curie/Université Versailles Saint Quentin)

[2] http://www.insu.cnrs.fr/a2131,nouvelle-loupe-isotopique-chimie-ozone-arctique.html

[3] http://www2.cnrs.fr/presse/journal/1416.htm

[4] by the Meteorological Service of Canada ( Global Atmospheric Watch program, coordinated by the World Meteorological Organization).

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr
http://www.upmc.fr

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>