Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why (Smart) Practice Makes Perfect

14.07.2010
Struggling with your chip shot? Constant drills with your wedge may not help much, but mixing in longer drives will, and a new study shows why.

Previous studies have shown that variable practice improves the brain’s memory of most skills better than practice focused on a single task. Cognitive neuroscientists at USC and UCLA describe the neural basis for this paradox in a new study in Nature Neuroscience.

The researchers split 59 volunteers into six groups: three groups were asked to practice a challenging arm movement, while the other three groups practiced the movement and related tasks in a variable practice structure.

Volunteers in the variable practice group showed better retention of the skill. The process of consolidating memory of the skill engaged a part of the brain – the prefrontal cortex – associated with higher level planning.

The group assigned to constant practice of the arm movement retained the skill to a lesser degree through consolidation that engaged a part of the brain – the primary motor cortex – associated with simple motor learning.

“In the variable practice structure condition, you’re basically solving the motor problem anew each time. If I’m just repeating the same thing over and over again as in the constant practice condition, I don’t have to process it very deeply,” said study senior author Carolee Winstein, professor of biokinesiology and physical therapy at USC.

“We gravitate toward a simple, rote practice structure because we’re basically lazy, and we don’t want to work hard. But it turns out that memory is enhanced when we engage in practice that is more challenging and requires us to reconstruct the activity,” Winstein said.

Winstein’s team, led by Shailesh Kantak, a graduate student in biokinesiology at the time of the study, verified the neural circuits involved through harmless magnetic interference applied immediately after practice.

Volunteers in the variable practice group who received magnetic stimulation in the prefrontal cortex failed to retain or “consolidate” the arm movement as well as those in the same group who did not receive magnetic stimulation.

This implied that the prefrontal cortex was necessary for consolidating the memory.

Likewise, constant practice volunteers who received magnetic stimulation in the primary motor cortex failed to retain the arm movement as well as volunteers in the same group who did not receive magnetic stimulation.

“While it may be harder during practice to switch between tasks … you end up remembering the tasks better later than you do if you engage in this drill-like practice,” Winstein said.

“In motor skills training they know this, in educational programs where they’re teaching the kids cursive hand writing, they know this.”

Winstein described the study as “the linking of motor neuroscience to behavioral movement science to better understand the neural substrates that mediate motor learning through optimal practice structures. No one had done this before in this way.”

The magnetic interference tests also helped define the time window for the brain to consolidate skills. For volunteers chosen to receive interference four hours after practice, the procedure had no effect on learning. This suggested the brain already had done its consolidation.

Winstein’s team included first author Kantak, a recent USC Ph.D. graduate on his way to a postdoctoral position at the Rehabilitation Institute of Chicago; fellow biokinesiology faculty Katherine Sullivan (primary adviser to Kantak) and Beth Fisher, director of the Neuroplasticity and Imaging Laboratory where the study was conducted; and Barbara Knowlton, professor of behavioral neuroscience at UCLA.

The study was funded by a grant from the North American Society for the Psychology of Sport and Physical Activity and an Oakley Fellowship from the Graduate School of USC to Kantak.

Journalists may obtain the study from USC Media Relations.

Carl Marziali | Newswise Science News
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>