Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not getting sleepy? Stanford research explains why hypnosis doesn't work for all

04.10.2012
Not everyone is able to be hypnotized, and new research from the Stanford University School of Medicine shows how the brains of such people differ from those who can easily be.

The study, published in the October issue of Archives of General Psychiatry, uses data from functional and structural magnetic resonance imaging to identify how the areas of the brain associated with executive control and attention tend to have less activity in people who cannot be put into a hypnotic trance.

"There's never been a brain signature of being hypnotized, and we're on the verge of identifying one," said David Spiegel, MD, the paper's senior author and a professor of psychiatry and behavioral sciences. Such an advance would enable scientists to understand better the mechanisms underlying hypnosis and how it can be used more widely and effectively in clinical settings, added Spiegel, who also directs the Stanford Center for Integrative Medicine.

Spiegel estimates that one-quarter of the patients he sees cannot be hypnotized, though a person's hypnotizability is not linked with any specific personality trait. "There's got to be something going on in the brain," he said.

Hypnosis is described as a trance-like state during which a person has a heightened focus and concentration. It has been shown to help with brain control over sensation and behavior, and has been used clinically to help patients manage pain, control stress and anxiety and combat phobias.

Hypnosis works by modulating activity in brain regions associated with focused attention, and this study offers compelling new details regarding neural capacity for hypnosis.

"Our results provide novel evidence that altered functional connectivity in [the dorsolateral prefrontal cortex] and [the dorsal anterior cingulate cortex] may underlie hypnotizability," the researchers wrote in their paper.

For the study, Spiegel and his Stanford colleagues performed functional and structural MRI scans of the brains of 12 adults with high hypnotizability and 12 adults with low hypnotizability.

The researchers looked at the activity of three different networks in the brain: the default-mode network, used when one's brain is idle; the executive-control network, which is involved in making decisions; and the salience network, which is involved in deciding something is more important than something else.

The findings, Spiegel said, were clear: Both groups had an active default-mode network, but highly hypnotizable participants showed greater co-activation between components of the executive-control network and the salience network. More specifically, in the brains of the highly hypnotizable group the left dorsolateral prefrontal cortex, an executive-control region of the brain, appeared to be activated in tandem with the dorsal anterior cingulate cortex, which is part of the salience network and plays a role in focusing of attention. By contrast, there was little functional connectivity between these two areas of the brain in those with low hypnotizability.

Spiegel said he was pleased that he and his team found something so clear. "The brain is complicated, people are complicated, and it was surprising we were able to get such a clear signature," he explained.

Spiegel also said the work confirms that hypnotizability is less about personality variables and more about cognitive style. "Here we're seeing a neural trait," he said.

The authors' next step is to further explore how these functional networks change during hypnosis. Spiegel and his team have recruited high- and low-hypnotizable patients for another study during which fMRI assessment will be done during hypnotic states. Funding for that work is being provided by the National Center for Complementary and Alternative Medicine.

Funding for this study came from the Nissan Research Center, the Randolph H. Chase, MD Fund II, the Jay and Rose Phillips Family Foundation and the National Institutes of Health.

The study's first-author is Fumiko Hoeft, MD, PhD, who was formerly an instructor at Stanford's Center for Interdisciplinary Brain Sciences Research and is now an associate professor of psychiatry at UCSF. Other co-authors are John Gabrieli, PhD, a professor at MIT (then a professor of psychology at Stanford); Susan Whitfield-Gabrieli, a research scientist at MIT (then a science and engineering associate at Stanford); Brian Haas, PhD, an assistant professor at the University of Georgia (then a postdoctoral scholar in the Center for Interdisciplinary Brain Sciences Research at Stanford); Roland Bammer, PhD, associate professor of radiology; and Vinod Menon, PhD, professor of psychiatry and behavioral sciences.

Information on the medical school's Department of Psychiatry and Behavioral Sciences, which also supported this work, is available at http://psychiatry.stanford.edu/.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

PRINT MEDIA CONTACT: Michelle Brandt at (650) 723-0272 (mbrandt@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Michelle Brandt | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>