Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep deprivation linked to junk food cravings

07.08.2013
A sleepless night makes us more likely to reach for doughnuts or pizza than for whole grains and leafy green vegetables, suggests a new study from UC Berkeley that examines the brain regions that control food choices. The findings shed new light on the link between poor sleep and obesity.

Using functional magnetic resonance imaging (fMRI), UC Berkeley researchers scanned the brains of 23 healthy young adults, first after a normal night’s sleep and next, after a sleepless night.

They found impaired activity in the sleep-deprived brain’s frontal lobe, which governs complex decision-making, but increased activity in deeper brain centers that respond to rewards. Moreover, the participants favored unhealthy snack and junk foods when they were sleep deprived.

“What we have discovered is that high-level brain regions required for complex judgments and decisions become blunted by a lack of sleep, while more primal brain structures that control motivation and desire are amplified,” said Matthew Walker, a UC Berkeley professor of psychology and neuroscience and senior author of the study published today (Tuesday, Aug. 6) in the journal Nature Communications.

Moreover, he added, “high-calorie foods also became significantly more desirable when participants were sleep-deprived. This combination of altered brain activity and decision-making may help explain why people who sleep less also tend to be overweight or obese.”

Previous studies have linked poor sleep to greater appetites, particularly for sweet and salty foods, but the latest findings provide a specific brain mechanism explaining why food choices change for the worse following a sleepless night, Walker said.

“These results shed light on how the brain becomes impaired by sleep deprivation, leading to the selection of more unhealthy foods and, ultimately, higher rates of obesity,” said Stephanie Greer, a doctoral student in Walker’s Sleep and Neuroimaging Laboratory and lead author of the paper. Another co-author of the study is Andrea Goldstein, also a doctoral student in Walker’s lab.

In this newest study, researchers measured brain activity as participants viewed a series of 80 food images that ranged from high-to low-calorie and healthy and unhealthy, and rated their desire for each of the items. As an incentive, they were given the food they most craved after the MRI scan.

Food choices presented in the experiment ranged from fruits and vegetables, such as strawberries, apples and carrots, to high-calorie burgers, pizza and doughnuts. The latter are examples of the more popular choices following a sleepless night.

On a positive note, Walker said, the findings indicate that “getting enough sleep is one factor that can help promote weight control by priming the brain mechanisms governing appropriate food choices.”

Yasmin Anwar | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Studies and Analyses:

nachricht New study shows nanoscale pendulum coupling
05.07.2019 | University of Barcelona

nachricht New unprinting method can help recycle paper and curb environmental costs
26.06.2019 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>