Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What happens when we sleep

30.01.2009
Lack of sleep is a common complaint but for many, falling asleep involuntarily during the day poses a very real and dangerous problem.

A new study from the Montreal Neurological Institute (MNI) at McGill University demonstrates interestingly, that sleep-wake states are regulated by two different types of nerve cells (neurons), melanin-concentrating hormone (MCH) neurons and orexin (Orx) neurons, which occupy the same region of the brain but perform opposite functions.

The MNI study is the first to discover that MCH neurons are activated during sleep and could thus be important in regulating the sleep state. The study, published in this week’s issue of the journal Proceedings of the National Academy of Sciences (PNAS), provides deeper understanding of the sleep-wake cycle and vital insight into the basis of sleep disorders such as narcolepsy and possibly also other diseases such as depression and Parkinson’s.

Sleep is regulated by processes in the brain in response to how long we are awake in addition to the light/dark cycle controlled by the circadian rhythm. With Drs. Oum Hassani and Maan Gee Lee, Dr. Barbara Jones at the MNI were studying a structure in the brain called the lateral hypothalamus (LH) known to be critical for maintaining wakefulness. MCH neurons, co-distributed with Orx neurons, constitute less than 10% of the LH. Previous studies have shown that Orx neurons are essential for maintenance of the awake state. These neurons are active in the waking state and turn off during sleep and in their absence, animals and humans experience narcolepsy with cataplexy or sudden loss of mucle tone. However, the role of MCH neurons was until now, unclear. Evidence from earlier knockout studies suggested that MCH neurons might play a different role than Orx neurons in regulating activity and sleep-wake states. Therefore the team at the MNI set up experiments to study the function of MCH neurons during the sleep-wake states.

“Remarkably, what we found is that MCH neurons are actually silent during waking, which is a surprising finding especially in this wake-promoting region of the brain. The neurons fire during sleep, and are most active during REM sleep,” says Dr. Barbara Jones, neuroscientist at the MNI and principal investigator in the study. “Our study markedly demonstrates that MCH neurons discharge in a reciprocal manner to the Orx neurons across the sleep-wake cycle.” Dr. Jones and colleagues used their expertise to apply and develop a difficult technique which allowed them to selectively record, label and thus identify a nerve cell containing a particular chemical. This allowed them to isolate the functions of the MCH and Orx cells even though they comprise less than 10% of the nerve cells in the LH.

The reciprocal profiles and roles of the Orx and MCH neurons could be significant in the manifestation of sleep disorders. It is possible that narcolepsy, which occurs with the loss of Orx neurons, is provoked in part by the MCH neurons that remain intact in the narcoleptic patients. A growing body of research shows that regular and normal sleep is necessary for overall health; regulating hormone levels, blood pressure, metabolism, alertness, mood, and consolidating memory. This study presents potential therapeutic avenues and targets for the treatment of various sleep disorders including the development of drugs that will act on receptors for Orx and MCH, to stimulate or block these receptors accordingly.

This work was supported by the Canadian Institutes of Health Research (CIHR) and the National Institutes of Health (NIH).

MNI:

October 2009 marks the 75th anniversary of the MNI. The MNI is a McGill University research and teaching institute, dedicated to the study of the nervous system and neurological diseases. Founded in 1934 by the renowned Dr. Wilder Penfield, the MNI is one of the world's largest institutes of its kind. MNI researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. The MNI, with its clinical partner, the Montreal Neurological Hospital (MNH), part of the McGill University Health Centre, continues to integrate research, patient care and training, and is recognized as one of the premier neuroscience centres in the world. At the MNI, we believe in investing in the faculty, staff and students who conduct outstanding research, provide advanced, compassionate care of patients and who pave the way for the next generation of medical advances.

Highly talented, motivated people are the engine that drives research - the key to progress in medical care. A new building, the North Wing Expansion, is currently under construction and will house state-of-the-art brain imaging facilities. Once the construction is completed and the new building is fully equipped, the scientific community focused on brain imaging research at the MNI will be without equivalent anywhere in the world.

Anita Kar | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>