Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sinusitis linked to microbial diversity

13.09.2012
UCSF study suggests new approach for dealing with common ailment

A common bacteria ever-present on the human skin and previously considered harmless, may, in fact, be the culprit behind chronic sinusitis, a painful, recurring swelling of the sinuses that strikes more than one in ten Americans each year, according to a study by scientists at the University of California, San Francisco.

The team reports this week in the journal Science Translational Medicine that sinusitis may be linked to the loss of normal microbial diversity within the sinuses following an infection and the subsequent colonization of the sinuses by the culprit bacterium, which is called Corynebacterium tuberculostearicum.

In their study, the researchers compared the microbial communities in samples from the sinuses of 10 patients with sinusitis and from 10 healthy people, and showed that the sinusitis patients lacked a slew of bacteria that were present in the healthy individuals. The patients also had large increases in the amount of Corynebacterium tuberculostearicum in their sinuses, which are located in the forehead, cheeks and eyes.

The team also identified a common bacterium found within the sinuses of healthy people called Lactobacillus sakei that seems to help the body naturally ward off sinusitis. In laboratory experiments, inoculating mice with this one bacterium defended them against the condition.

"Presumably these are sinus-protective species," said Susan Lynch, PhD, an associate professor of medicine and director of the Colitis and Crohn's Disease Microbiome Research Core at UCSF.

What it all suggests, she added, is that the sinuses are home to a diverse "microbiome" that includes protective bacteria. These "microbial shields" are lost during chronic sinusitis, she said, and restoring the natural microbial ecology may be a way of mitigating this common condition.

A Painful, Costly Condition

Sinuses are air-filled cavities in the front of the skull that connect to the nasal passages and are lined with mucosal surfaces. They are somewhat shrouded in mystery. Scientists are not entirely sure what they do. They may exist to heat air as it passes into the body, they may be associated with the immune system, or as Lynch and her colleagues speculate, they may represent a site of microbial surveillance just inside the nose where the body can sample bacteria and other microbes entering the body.

Though the sinuses' underlying purpose is still unclear, they are all too familiar to American doctors and their patients because of what happens when the thin tissues lining them become inflamed, as occurs in chronic sinusitis—one of the most common reasons why people go to the doctor in the United States. There are about 30 million cases each year, and the cost to the healthcare system is an estimated $2.4 billion dollars annually.

The pain of sinusitis can last for months. Doctors typically prescribe bacteria-killing antibiotics and, in more severe and long-lasting cases, conduct sinus surgeries. However, said Andrew Goldberg, MSCE, MD, the director of rhinology and sinus surgery at UCSF and a co-author on the paper, "the premise for our understanding of chronic sinusitis and therapeutic treatment appears to be wrong, and a different therapeutic strategy seems appropriate."

The new work suggests that if the underlying cause of sinusitis is due to changes to the microbiome of bacterial species colonizing sinus tissue, restoring the naturally-occurring, protective bacteria to these cavities may be an effective way to treat this condition.

However, the UCSF-led team warned that the promise of this discovery does not offer an immediate new treatment or cure for sinusitis. Any new approaches based on these observations still have to be developed and tested for safety and effectiveness in human clinical trials.

The article, "Sinus Microbiome Diversity Depletion and Corynebacterium tuberculostearicum Enrichment Mediates Rhinosinusitis" by Nicole A. Abreu, Nabeetha A. Nagalingam, Yuanlin Song, Frederick C. Roediger, Steven D. Pletcher, Andrew N. Goldberg, and Susan V. Lynch appears in the September 12, 2012, issue of Science Translational Medicine. See: http://stm.sciencemag.org/

In addition to UCSF, authors on this study are affiliated with San Francisco State University, the University of California Berkley, and Fudan University in Shanghai, China.

This study was supported by the American Rhinological Society, the Rainin Foundation, the National Institute of Allergy and Infectious Diseases (one of the National Institutes of Health), the Minority Biomedical Research Support-Research Initiative for Scientific Enhancement (MBRS-RISE), the California Institute for Regenerative Medicine, and the Rebecca Susan Buffett Foundation.

Lynch is a member of the advisory board of Second Genome, which is developing treatments for human diseases based on microbiome research, and she is one of three co-authors on the paper who have filed a patent application for sinusitis diagnostics and treatments.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>