Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-cell parasites co-opt 'ready-made' genes from host: UBC research

19.07.2012
Two species of single-cell parasites have co-opted "ready-made" genes from their hosts that in turn help them exploit their hosts, according to a new study by University of British Columbia and University of Ottawa researchers.

Part of a group of parasitic microbes called microsporidia, Encephalitozoon hellem and Encephalitozoon romaleae are related to fungi and are commonly found in the intestines of vertebrates. In humans, they are associated with people with immune deficiencies.

The research team identified six genes in these parasites that were not found in any other microsporidian. Rather than the slow process of inheriting individual genes, E. hellem and E. romaleae have acquired a suite of genes that produce folate, a form of folic acid that helps cell division and growth.

"With their tiny, reduced genomes, microsporidia are models for gene loss," says lead author Patrick Keeling, a professor in UBC's Dept. of Botany.

"These parasites have undergone massive genome reductions and are literally infection machines – they only kept genes that are essential for survival."

"But here we found two species have actually acquired new genes that work together to make an essential nutrient that the parasites would otherwise have to steal from their host – opening up new tissues or even new hosts as targets for infection," says Keeling, director of the Centre for Microbial Diversity and Evolution and a member of Beaty Biodiversity Research Centre at UBC.

The process of horizontal gene transfer – the ability to acquire ready-made genes with specific functions from foreign genomes – is an important but often overlooked mechanism of evolution, according to Keeling. "It helps explain the relatively rapid evolution of these tiny organisms and their ability to infect and live off of a wide variety of hosts."

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Studies and Analyses:

nachricht TU Dresden biologists examine sperm quality on the basis of their metabolism
29.11.2019 | Technische Universität Dresden

nachricht Approaching the perception of touch in the brain
27.11.2019 | Max Planck Institute for Human Cognitive and Brain Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>