Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single bioptic telescope for low vision driving may not obscure road view of second eye

10.05.2011
A study by scientists at Schepens Eye Research Institute shows that a bioptic telescope on one lens of a pair of glasses used to magnify traffic signs and lights may not prevent the wider view of the road with the second eye.

The study results, which will be published in the May 2011 Archives of Ophthalmology, are the first evidence that--under more realistic viewing conditions than in earlier studies--the second eye can detect objects in the area obscured by the magnification effect of the telescope (called the ring scotoma).

"These study results are significant because they should ease official and public concerns about the safety of bioptic telescope use for driving with visual impairments," says Dr. Eli Peli, the principal investigator of the study, who is a low vision expert, a senior Schepens scientist, and a professor of Ophthalmology at Harvard Medical School.

In previous studies, participants wearing the bioptic telescope were asked to view a blank (plain) background and focus on a simple fixation point—a cross— while detecting random visual targets presented to them, a task that requires little attention and concentration.

"Our current study required subjects to view more complex, textured backgrounds and focus on and read letters, which are more akin to visual situations encountered in real life and on the road," says Peli.

Bioptics, developed more than 100 years ago, are small telescopes that are attached above the center of one spectacle lens. A slight downward tilt of the head and upward shift of the eyes can bring a distant road sign or traffic light into view for people with vision impairments. When looking through the telescope, a blind area (scotoma) is created due to the magnification of the telescope. The blind area is in the shape of a ring surrounding what is seen through the telescope (hence the name "ring scotoma"). For instance, a person viewing a traffic light with the telescope will see the light, but will not be able to see the surrounding intersection, with the same eye. Although bioptics were introduced as driving aids 50 years ago and are approved for driving in 39 states, safety has remained a concern, in particular the effect of the ring scotoma on detection of traffic hazards. In some states this concern resulted in restricting the telescope to one eye only, leaving the other to monitor the area of the ring scotoma during telescope use.

In the Archives of Ophthalmology study, Amy Doherty, the first author, and the research team, conducted a series of tests evaluating the ability of the second (fellow) eye to detect targets in the area of the ring scotoma on both simple and complex backgrounds, with and without the bioptic telescope on one lens.

They began by fitting 14 subjects with bioptic glasses and used a novel display system that allowed them to present visual stimuli to each eye separately while both eyes were watching the screen. The team then "mapped" or determined the dimensions and position of the blind area (ring scotoma) in each subject's telescopic eye by presenting visual stimuli only to that eye.

Next, each subject underwent four viewing conditions while wearing the telescope in front of one eye, and the same four conditions without the telescope. In all cases, both eyes were open, while a visual stimulus or target (a small checkerboard square), presented to the second eye only, appeared randomly in different parts of the ring scotoma area. The subjects pressed a button whenever they saw the target.

The four conditions were: passively viewing a cross on a gray background, passively viewing a cross on a more complex textured background, actively reading letters on a gray background, and actively reading letters on the textured background. The textured background seen magnified in the telescopic eye resulted in a rivalry (competition) effect between the images from the two eyes that could result in the brain ignoring (suppressing) the image from the second eye. Any suppression of the second eye when looking through a bioptic telescope could potentially result in a traffic hazard not being noticed.

In all cases no significant difference was found between what the second eye saw when the first eye was using the telescope and when it wasn't using the telescope. With the bioptics, the second eye was able to detect the target 86 percent of the time, while without the bioptics, it detected the target 87 percent of the time. As expected, more targets were detected on a gray background than on a textured background and while focused on a simple cross than while reading letters.

"These results suggest that the bioptic driver may not be blind to traffic when looking through the telescope, because the second eye can detect targets in the area obscured by the telescope," says Doherty.

While the study results are encouraging, Peli and Doherty agree that it is still essential to test the use of bioptics in even more realistic circumstances.

"Our next testing conditions will be with video segments that closely mimic the visual scene and attention required during actual driving situations," says Doherty, who adds that over time, the research team also hopes to gather data from driving simulators and even actual on-the-road monitoring.

Drs Alex Bowers and Gang Luo, also in The Mobility Enhancement and Rehabilitation Center at Schepens Eye Research Institute, contributed to the study.

Schepens Eye Research Institute is an affiliate of Harvard Medial School and the largest independent eye research institute in the nation.

Patti Jacobs | EurekAlert!
Further information:
http://www.schepens.harvard.edu/

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>