Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple reasoning strategies can be as precise as the complex ones

27.01.2009
We go into a restaurant with the aim of eating healthily. The menu does not tell us much about fats, salt or additives contained in the dishes.

So how do we make the best decision? Psychologists Rocío García-Retamero and Jörg Rieskamp have analysed the influence that inferences about missing information can have on the accuracy of our decisions.

Rocío García-Retamero, a teacher at the Faculty of Psychology from the University of Granada (Universidad de Granada -UGR), and Jörg Rieskamp, a researcher from the Max Planck Institute for Human Development in Germany, have examined the hit rate of the two types of strategy we usually use to make inferences, depending on the mechanism that is used to treat information that is not available to us.

The strategies are known as the take-the-best (TTB) and weighted additive (WADD) strategies, “two prototype strategies that represent very well how we as human beings usually behave”, García-Retamero explains to SINC.

The first strategy, namely TTB, consists of selecting a route, the one we consider most significant for our objectives. In the restaurant, for example, the cooking method can be useful to enable us to differentiate between a healthy meal and an unhealthy one. Even if this facility does not allow us to discriminate, then we select a second route.

On the other hand, by using the WADD strategy, we consider many more routes and value the importance of each of them more. So, the cooking method together with other properties of the food, such as source and nutrient content, are added to the inference with reasoning.

Ways of inferring

The researchers explain that in the last twenty years studies dealing with the way in which individuals deal with incomplete information have shown that we function very differently, depending on the type of inference problem we are confronting.

The distribution of information that is missing can help us. Returning to the example of the restaurant, we can consider, for example, that that information is the same for all the dishes (uniform distribution) or that, on the other hand, for the less healthy dishes that “hidden” information is greater (conditioned distribution).

Using these criteria, the researchers have designed ten inference problems, that differ in respect to the number of objects considered (between 24 and 181), the quantity of missing information (from 0 to 100%) and the distribution of that information (uniform or conditioned), and they have calculated the hit rate percentage in each case.

The study reveals that the different options of dealing with what we do not know and also the ways in which the “hidden” information is distributed have the same impact upon the two inference strategies. The authors call this a “surprising” result, because a priori we could think that using a compensated strategy such as the weighted additive strategy increases the probability of being right about our inferences.

However, as the psychologist points out, the result “is in line with previous studies about the take-the-best strategy, that show that simple strategies based on a small amount of information can be as precise as those made up of a high number of clues in our environment”.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>