Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-organising system enables motile cells to form complex search pattern

07.05.2019

Researchers at the Cells-in-Motion Cluster of Excellence at Münster University have discovered that curvatures of cell membranes trigger a self-organising system. As a result, cells can move in the same direction over a longer distance, forming search patterns. The study has been published in the journal “Nature Physics”.

When an individual cell is placed on a level surface, it does not keep still, but starts moving. This phenomenon was observed by the British cell biologist Michael Abercrombie as long ago as 1967. Since then, researchers have been thriving to understand how cells accomplish this feat.


A cell moves forward: I-BAR proteins (pink) accumulate at the spot at which its lamellipodium curves. Thereby, the cell can locally arrange the protein actin (green) and generate a lamellipodial cycle

Isabell Begemann, Milos Galic

This much is known: cells form so-called lamellipodia – cellular protrusions that continuously grow and contract – to propel themselves towards signalling cues such as chemical attractants produced and secreted by other cells.

When such external signals are missing – as in the observation by Abercrombie – cells begin actively looking for them. In doing so, they use search patterns that can also be observed in sharks, bees or dogs.

They transiently move in one direction, stop, wiggle on the spot for a while, and then continue moving in another direction. But how do cells manage to maintain the direction of their movement over a longer period of time?

Researchers at the Cells-in-Motion Cluster of Excellence at the University of Münster have now decoded a building block towards answering this question. They discovered that membrane geometry can trigger subsequent lamellipodial cycles: Mechanical forces cause generation of membrane curvature, where certain proteins that recognise this geometry congregate. These proteins, in turn, allow the cell to form the lamellipodia.

“The curvature, generated during retraction, already predetermines the growth of the next lamellipodial cycle. This is how the mechanism constantly reactivates itself,” explains biologist Dr Milos Galic, junior research group leader at the Cluster of Excellence, and senior author of the study. When external signals are missing, a cell does not just stop and mark time – it is able to momentarily head in one direction and efficiently patrol its environment. The study has been published in the “Nature Physics” journal.

Methods and further results

The starting point for the study was a surprising observation made while analysing microscopic images. The researchers were investigating how cells formed lamellipodia and, in consequence, how the motion and shape of cells changed. They discovered that the lamellipodia evolved over a wide range of sizes and had very different lifespans.

“In the data we couldn’t recognise any recurring pattern in the growth and contraction of lamellipodia,” says biologist Dr Isabell Begemann, who carried out the study as lead author, as part of her doctoral dissertation. The researchers were able to determine, similar to work from other groups, that sites of subsequent lamellipodia extension occurred wherever the cell membrane developed a strong curvature. They therefore hypothesized that a mechanism linked to these curvatures may determine continuous motion cycles and, in consequence, motion persistence.

Biologists, biochemists and physicists worked closely together to investigate this idea. They first developed biosensors in order to label highly curved sites at the cell membrane, and visualised them by various means of high-resolution microscopy. To this end, they connected fluorescent molecules with so-called I-BAR domains.

These are banana-shaped regions of proteins whose positively charged side binds the negatively charged cell membrane – but only when the membrane is curved. Taking advantage of these biosensors, the researchers were able to demonstrate that the curvature-sensitive proteins accumulate at sites where the lamellipodium is contracting.

Once enriched, these proteins induce protruding forces in the cell via the protein actin, which triggers outgrowth of the lamellipodium. In a next step, the researchers developed a mathematical model that reconstitutes the mechanism, and simulated it on the computer using various parameter combinations. Comparing the predictions derived from the mathematical model with complementing experimental imaging data further strengthened the results found so far.

The researchers found evidence for the presence of the identified motility mechanism in cell culture models, for example in connective tissue cells derived from mice, in human blood vessel cells from the umbilical cord, and also in human immune cells – i.e. a cell type which indeed moves freely within the organism.

Finally, the researchers also wanted to know what effects the proposed mechanism had on the motility pattern of a cell. “We down-regulated the I-BAR proteins, enabling us to ‘hack into’ the cell’s self-organisation system,” says Milos Galic. Without the mechanism, the cell does still manage to move, but the search area becomes substantially smaller.

Parallel to this mechanism, there are certainly other machineries, which intertwine – but the mechanism has influence on a cell’s motility pattern. The results of the study could, in future, help in answering fundamental questions on processes in organisms involving freely moving cells.

Funding:

The study received financial support from the Cells-in-Motion Cluster of Excellence at the University of Münster; from two Collaborative Research Centres funded by the German Research Foundation (SFB 1348 “Dynamic cellular interfaces: formation and function” at Münster University, and SFB 994 “Physiology and dynamics of cellular microcompartments” at the University of Osnabrück); and from the Faculty of Medicine at Münster University.

Wissenschaftliche Ansprechpartner:

Dr. Milos Galic
University of Münster
Tel: +49(0)251 83-51040
Email: galic@uni-muenster.de

Originalpublikation:

I. Begemann et al. (2019): Mechanochemical self-organization determines search pattern in migratory cells. Nature Physics; epub; DOI: 10.1038/s41567-019-0505-9.

Weitere Informationen:

https://www.uni-muenster.de/Cells-in-Motion/newsviews/2019/05-06.html Animated gif on the Cells-in-Motion website

https://www.nature.com/articles/s41567-019-0505-9 Original publication in "Nature"

Doris Niederhoff | idw - Informationsdienst Wissenschaft

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>