Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking for Secrets to Drug Addiction in Our Blood

22.09.2010
PNNL and Air Force 59th to develop better tests for drug abuse and dependence

A new collaboration between the Department of Energy's Pacific Northwest National Laboratory and the Air Force's 59th Medical Wing hopes to improve on drug tests for illicit drug use and abuse. Not only are the researchers looking for a better indicator of current or past use, but they'd like to be able to identify people prone to abusing drugs in the first place.

Funded by the Department of Defense, the $850,000 two-year study will lay the foundation for future work to determine who might be susceptible to hydrocodone. Initially, the collaboration will map out drug breakdown products, proteins and other compounds that healthy bodies make in response to the prescription painkiller hydrocodone.

"We want to enhance the prevention, diagnosis and treatment of drug addiction. Our military deserves the best care we can give them," said Lt. Col. (Dr.) Vikhyat Bebarta, a research physician in the 59th Medical Wing at Lackland Air Force Base near San Antonio, Texas. Bebarta will be co-leading the study with biochemist Josh Adkins of PNNL.

The results will likely extend beyond the military. "Any tools for drug addiction that come out of this study could also be used by the general public," said Adkins.

Just as some genes confer a susceptibility to alcoholism, the team hopes to find some indicator of susceptibility to dependence on painkillers such as hydrocodone. Instead of a gene, though, the researchers hope to find a difference in how a susceptible person responds to the drug, compared to a nonsusceptible one. If such an indicator exists in blood, urine or saliva, not only would it improve our understanding of the biological response to hydrocodone, but tests that reveal the indicator could be developed.

Dependency tendency

The painkiller hydrocodone is one of the most abused drugs in the U.S. Its use, abuse and addictive potential pose special concern for the armed forces, whose members suffer trauma more often than the average civilian. Hydrocodone is an opioid closely related to the opiate morphine. Both military and civilian doctors are prescribing hydrocodone more often, making it more accessible for people to misuse and abuse.

The rising prescription rate and greater availability has likely contributed to an increase in number of patients in treatment. Admission for drug abuse treatment programs for hydrocodone and related opiates more than quadrupled between 1997 and 2007, according to a 2007 report from the National Admissions to Substance Abuse Treatment Services. (This does not include the opiate heroin, which remained stable over that time.)

Knowing if a military member is misusing or abusing hydrocodone is essential to national security and to the safety of military personnel. In 2005, the Department of Defense found that 7.3% of active duty personnel across all branches of the military had used analgesics including hydrocodone without a medical need in the previous year.

Finding users

Doctors have several tests to determine who is using hydrocodone or other illicit drugs, but they are inadequate. The simplest -- a screening questionnaire -- is not definitive. And current blood or urine tests for hydrocodone only determine whether the drug been used in the last few hours or days. In addition, several drugs cross react in the blood test, making them unreliable.

More important, there is no current screening test for recent or past hydrocodone use. Psychotherapeutics rank right behind marijuana as the most commonly abused drugs among the military and civilians, and hydrocodone and other pain relievers are the most popular of the psychotherapeutics.

To determine if someone had been using hydrocodone in the recent past, the researchers will take snapshots of changes that can be detected in blood or urine. "We already know how it works in the brain, so we will focus on the body. Hydrocodone has a physiological response on the whole body to fight pain," said Bebarta.

The first part of the study seeks to determine the baseline for what hydrocodone does to normal healthy subjects. The researchers will look for changes to a variety of body systems after healthy volunteers take the drug. The systems they're looking at include the pain response, inflammation, and stress -- all known to be involved in hydrocodone's effect.

"Partnering with the 59th Medical Wing takes advantage of the strengths in each group," said PNNL biologist Karin Rodland, chief scientist for biomedical research and co-investigator on the team.

Because the Air Force researchers have extensive expertise in toxicology and drug metabolism at Wilford Hall Medical Center in San Antonio, they will perform the part of the study that looks at how hydrocodone gets metabolized. Backed by PNNL's expertise in the field of proteomics, the PNNL team will check for changes in about 2000 different protein levels using state-of-the-art instruments in EMSL, DOE's Environmental Molecular Sciences Laboratory on the PNNL campus.

The baseline studies will take two to three years to complete. Armed with a baseline, the researchers will be able to conduct other experiments with hydrocodone-dependent patients to look for indicators that identify those who are most likely to abuse it.

Eventually, the team's goal is for a clear understanding of a dependent patient's complete physiological response to opioids. They are hopeful they will find a susceptibility marker and discover new ways to personalize opioid pain medicine. "That would require a systems biology level of understanding of a person's response to opiate," said Rodland, "but we hope we get the chance to try."

EMSL, the Environmental Molecular Sciences Laboratory located at Pacific Northwest National Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science, Biological and Environmental Research program. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL’s technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies.EMSL's Facebook page.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,700 staff, has an annual budget of nearly $1.1 billion, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | Newswise Science News
Further information:
http://www.pnl.gov/news/

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A materials scientist’s dream come true

21.08.2018 | Materials Sciences

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>