Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SDSC-Developed Software Used in First Global Camera Trap Mammal Study

14.09.2011
TEAM Project Offers First Worldwide View of Declining Mammal Populations

A novel software system developed by researchers at the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, has been used in the first global camera trap study of mammals, which made international headlines last month by emphasizing the importance of protected areas to ensure the diversity and survival of a wide range of animal populations.

The study, led by Jorge Ahumada, an ecologist with the Tropical Ecology Assessment and Monitoring Network (TEAM) at Conservation International, documented 105 species in nearly 52,000 images from seven protected areas across the Americas, Africa, and Asia. The images, according to a recent announcement by TEAM and Conservation International, reveal a wide variety of animals in their most candid moments – from a minute mouse to the enormous African elephant as well as gorillas, cougars, giant anteaters and, surprisingly, even tourists and poachers. A gallery of images from the study can be found here.

Findings from the study – not only the first global camera trap mammal study but also the largest camera trap study of any class of animals – were published in the journal Philosophical Transactions of the Royal Society. Analysis of collected data has helped scientists confirm a key conclusion that until now was only understood through uncoordinated local study: that habitat loss and smaller reserves have a direct and detrimental impact on the diversity and survival of mammal populations.

“Our goal was to come up with a software system to address the fact that despite advances in digital image capture, field biologists still lack adequate software solutions to process and manage the increasing amount of digital information in a cost-efficient manner,” said SDSC researcher Kai Lin, who led the software project.

Jorge Ahumada, ecologist with the Tropical Ecology Assessment and Monitoring Network (TEAM) and lead author of the Global Camera Trap Mammal Study.

© Jorge Ahumada

Called DeskTEAM and developed in the context of the TEAM project, the system incorporates numerous software features and functions specifically designed for the broader camera trapping community, such as the ability to run the application locally on a laptop or desktop computer without requiring an Internet connection, as well as the ability to run on multiple operating systems. The software also has an intuitive navigational user interface which allows users to easily manage hundreds or even thousands of images; the ability to automatically extract customized metadata information from digital images to increase standardization; the availability of embedded taxonomic lists so images can be easily tagged with species identities; and the ability to export data packages consisting of data, metadata, and images in standardized formats so that they can be transferred to online data warehouses for easy archiving and dissemination. Complete details of the DeskTEAM software system can be found here.

“We have been partners with Conservation International on the TEAM project since the early days of the project, beginning in September 2007,” said Chaitan Baru, a distinguished scientist at SDSC and lead of the TEAM cyberinfrastructure effort. “A talented and dedicated group of research and development staff at SDSC helped design the comprehensive cyberinfrastructure that runs the entire global TEAM network. We developed the various cyberinfrastructure components, and the services are now hosted and run out of SDSC.”

In addition to Baru and Lin, the TEAM cyberinfrastructure team at SDSC includes Sandeep Chandra, Kate Kaya, and Choonhan Youn.

“What makes this study scientifically groundbreaking is that we created for the first time consistent, comparable information for mammals on a global scale setting an effective baseline to monitor change. By using this single, standardized methodology in the years to come and comparing the data we receive, we will be able to see trends in mammal communities and take specific, targeted action to save them,” said Ahumada. “We hope that these data contribute to a better management of protected areas and conservation of mammals worldwide, and a more widespread use of standardized camera trapping studies to monitor these critically important animals.”

The Tropical Ecology Assessment and Monitoring Network (TEAM) is a partnership that includes Conservation International, The Missouri Botanical Garden, The Smithsonian Institution and the Wildlife Conservation Society. It is partially funded by these institutions and the Gordon and Betty Moore Foundation. Local Partners in the study are: Instituto Nacional de Pesquisas da Amazonia (INPA), Conservation International Suriname, Organization for Tropical Studies, Museo Tridentino di Scienze Naturali, and Institute of Tropical Forest Conservation.

Media Contacts:
Jan Zverina, SDSC Communications, 858 534-5111 or jzverina@sdsc.edu
Warren R. Froelich, SDSC Communications, 858 822-3622 or froelich@sdsc.edu

Jan Zverina | EurekAlert!
Further information:
http://www.sdsc.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>