Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Screening detects ovarian cancer using neighboring cells

23.04.2013
Study results could translate into a minimally invasive early detection method

Pioneering biophotonics technology developed at Northwestern University is the first screening method to detect the early presence of ovarian cancer in humans by examining cells easily brushed from the neighboring cervix or uterus, not the ovaries themselves.

A research team from Northwestern and NorthShore University HealthSystem (NorthShore) conducted an ovarian cancer clinical study at NorthShore. Using partial wave spectroscopic (PWS) microscopy, they saw diagnostic changes in cells taken from the cervix or uterus of patients with ovarian cancer even though the cells looked normal under a microscope.

The results have the potential to translate into a minimally invasive early detection method using cells collected by a swab, exactly like a Pap smear. No reliable early detection method for ovarian cancer currently exists.

In previous Northwestern-NorthShore studies, the PWS technique has shown promising results in the early detection of colon, pancreatic and lung cancers using cells from neighboring organs. If commercialized, PWS could be in clinical use for one or more cancers in approximately five years.

The ovarian cancer study was published this month by the International Journal of Cancer.

PWS uses light scattering to examine the architecture of cells at the nanoscale and can detect profound changes that are the earliest known signs of carcinogenesis. These changes can be seen in cells far from the tumor site or even before a tumor forms.

"We were surprised to discover we could see diagnostic changes in cells taken from the endocervix in patients who had ovarian cancer," said Vadim Backman, who developed PWS at Northwestern. "The advantage of nanocytology -- and why we are so excited about it -- is we don't need to wait for a tumor to develop to detect cancer."

Backman is a professor of biomedical engineering at the McCormick School of Engineering and Applied Science. He and his longtime collaborator, Hemant K. Roy, M.D., formerly of NorthShore, have been working together for more than a decade and conducting clinical trials of PWS at NorthShore for four years. Backman and Roy both are authors of the paper.

"The changes we have seen in cells have been identical, no matter which organ we are studying," Backman said. "We have stumbled upon a universal cell physiology that can help us detect difficult cancers early. If the changes are so universal, they must be very important."

Ovarian cancer, which ranks fifth in cancer fatalities among American women, usually goes undetected until it has spread elsewhere. The cancer is difficult to treat at this late stage and often is fatal.

"This intriguing finding may represent a breakthrough that would allow personalization of screening strategies for ovarian cancer via a minimally intrusive test that could be coupled to the Pap smear," Roy said.

At the time of the ovarian cancer study, Roy was director of gastroenterology research at NorthShore and worked with Jean A. Hurteau, M.D., a gynecological oncologist at NorthShore. (Hurteau is an author of the paper.) Roy is now chief of the section of gastroenterology at Boston University School of Medicine and Boston Medical Center.

The study included a total of 26 individuals. For cells taken from the endometrium (part of the uterus), there were 26 patients (11 with ovarian cancer and 15 controls); for cells taken from the endocervix, there were 23 patients (10 with ovarian cancer and 13 controls). The small size of the study reflects the difficulty in recruiting ovarian cancer patients.

Cells were placed on slides and then examined using PWS. The results showed a significant increase in the disorder of the nanoarchitecture of epithelial cells obtained from cancer patients compared to controls for both the endometrium and endocervix studies.

The cells for the ovarian cancer study were taken from the cervix and uterus. For the earlier lung cancer study, cells were brushed from the cheek. For the colon, cells came from the rectum, and for the pancreas, cells came from the duodenum. Cells from these neighboring organs showed changes at the nanoscale when cancer was present.

PWS can detect cell features as small as 20 nanometers, uncovering differences in cells that appear normal using standard microscopy techniques. PWS measures the disorder strength of the nanoscale organization of the cell, which is a strong marker for the presence of cancer in the organ or in a nearby organ.

The PWS-based test makes use of the "field effect," a biological phenomenon in which cells located some distance from the malignant or pre-malignant tumor undergo molecular and other changes.

The paper is titled "Insights into the field carcinogenesis of ovarian cancer based on the nanocytology of endocervical and endometrial epithelial cells." The paper is available at http://onlinelibrary.wiley.com/doi/10.1002/ijc.28122/abstract.

In addition to Backman, Roy and Hurteau, other authors of the paper include Dhwanil Damania, Hariharan Subramanian, Lusik Cherkezyan, all from Northwestern, and Dhananjay Kunte, Nela Krosnjar and Maitri Shah, all from NorthShore University HealthSystem.

Editor's note: Backman, Roy and Subramanian are co-founders and/or shareholders in Nanocytomics LLC.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>