Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal source of human heartbeat in 3-D

07.08.2017

A pioneering new study is set to help surgeons repair hearts without damaging precious tissue

A pioneering new study is set to help surgeons repair hearts without damaging precious tissue.


This is a 3-D print in plastic showing the same heart. You can handle the print and point out the cardiac conduction system. The heart is printed in three pieces (two shown here) so you can open it and see the interior surface.

Credit: The University of Manchester

A team of scientists from Liverpool John Moores University (LJMU), The University of Manchester, Aarhus University and Newcastle University, have developed a way of producing 3D data to show the cardiac conduction system - the special cells that enable our hearts to beat - in unprecedented detail. The findings were published in Scientific Reports.

The new data in this study gives them a much more accurate framework than previously available for computer models of the heartbeat and should improve our ability to make sense of troublesome heart rhythms like atrial fibrillation that affects 1.4 million people in the UK. The data reveals exactly where the cardiac conduction system is in a normal heart. For example, it shows just how close it runs to the aortic valve.

Professor Jonathan Jarvis who is based at the LJMU School of Sport and Exercise Sciences explained: "The 3D data makes it much easier to understand the complex relationships between the cardiac conduction system and the rest of the heart. We also use the data to make 3D printed models that are really useful in our discussions with heart doctors, other researchers and patients with heart problems.

"New strategies to repair or replace the aortic valve must therefore make sure that they do not damage or compress this precious tissue. In future work we will be able to see where the cardiac conduction system runs in hearts that have not formed properly. This will help the surgeons who repair such hearts to design operations that have the least risk of damaging the cardiac conduction system."

Co-author Dr Halina Dobrzynski, who is based in The University of Manchester's Cardiovascular Division, has been working on the anatomy of the cardiac conduction system for 20 years. She says: "This is just the beginning. The British Heart Foundation is supporting my group to visualise this system in 3D from aged and failing hearts. With my research assistant Andrew Atkinson and working with Professor Jonathan Jarvis, Robert Stephenson and others, we will produce families of data from aged and failing hearts in 3D."

How this works

Soaking post-mortem samples in a solution of iodine, means soft tissue such as the heart can absorb X-rays and become visible.

With modern X ray scanners, scientists can make detailed 3D images. In the best images, they can even see the boundaries between single heart cells, and detect in which direction they are arranged. Within the heart, there is a special network called the cardiac conduction system that generates and distributes a wave of electrical activity stimulating the heart muscle to contract. This system makes sure that the various parts of the heart contract regularly and in a coordinated way, a bit like a team of rowers in a boat race. If the system is damaged, and one part of the heart contracts out of time with the rest, then the heart does not pump so efficiently.

###

This research was also in collaboration with the Visible Heart Laboratory, University of Minnesota, Minneapolis, USA; National Institute of Legal Medicine, Bucharest, Romania and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand

Micro-CT scanning was carried out using the Nikon Metris XTEK 320 kV Custom Bay and Nikon XTEK XTH 225 kV systems at the Manchester X-Ray Imaging Facility, University of Manchester".

Media Contact

Jamie Brown
jamie.brown@manchester.ac.uk
44-161-275-8383

 @UoMNews

http://www.manchester.ac.uk 

Jamie Brown | EurekAlert!

More articles from Studies and Analyses:

nachricht What and how much we eat might change our internal clocks and hormone responses
07.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Do horses copy humans?
30.10.2019 | Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>