Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify mutation in SIGMAR1 gene linked to juvenile ALS

12.08.2011
Sigma-1 receptor offers potential therapeutic target

Researchers from the Kingdom of Saudi Arabia have identified a mutation on the SIGMAR1 gene associated with the development of juvenile amyotrophic lateral sclerosis (ALS). Study findings published today in Annals of Neurology, a journal of the American Neurological Association and the Child Neurology Society, show the gene variant affects Sigma-1 receptors which are involved in motor neuron function and disease development.

ALS, also referred to as Lou Gehrig's disease, is a progressive neurodegenerative disorder that attacks brain and spinal cord nerve cells (neurons) responsible for controlling voluntary muscle movement. The degeneration of upper and lower motor neurons gradually weakens the muscles they control, leading to paralysis and eventual death from respiratory failure.

Studies report an annual incidence of 1-3 per 100,000 individuals, with 90% of cases not having a family history of the disease (sporadic ALS). In the remaining 10% of cases there is more than one affected family member (familial ALS). Juvenile ALS—characterized by age of onset below 25 years—is a rare and sporadic disorder, making it difficult to determine incidence rates. One of the more prominent juvenile ALS patients is renowned physicist, Professor Stephen Hawking, who was diagnosed at the age of 21.

Previous research found that mutation of the superoxide dismutase 1 (SOD1) gene accounts for 20% of familial and 5% of sporadic ALS cases; gene mutations of ALS2 and SETX have been reported in juvenile ALS cases. The present study led by Dr. Amr Al-Saif from the King Faisal Specialist Hospital and Research Center in Riyadh, KSA performed genetic testing on four patients from an ALS family who were diagnosed with juvenile ALS to investigate mutations suspected in disease development.

Researchers performed gene mapping on the DNA of study participants and used direct sequencing to detect the genetic variant. The team identified a shared homozygosity region in affected individuals and gene sequencing of SIGMAR1 revealed a mutation affecting the encoded protein, Sigma-1 receptor. Those cells with the mutant protein were less resistant to programmed cell death (apoptosis) induced by stress to the endoplasmic reticulum.

"Prior evidence has established that Sigma-1 receptors have neuroprotective properties and animal models with this gene inactivated have displayed motor deficiency," explains Dr. Al-Saif. "Our findings emphasize the important role of Sigma-1 receptors in motor neuron function and disease. Further exploration is warranted to uncover potential therapeutic targets for ALS. "

This study is published in Annals of Neurology. Media wishing to receive a PDF of this article may contact healthnews@wiley.com.

Full citation: "A Mutation in Sigma-1 Receptor Causes Juvenile Amyotrophic Lateral Sclerosis"; Amr Al-Saif, Futwan Al-Mohanna and Saeed Bohlega. Annals of Neurology; Published Online: August 12, 2011 (DOI:10.1002/ana.22534). http://doi.wiley.com/10.1002/ana.22534

About the Journal

Annals of Neurology, the official journal of the American Neurological Association and the Child Neurology Society, publishes articles of broad interest with potential for high impact in understanding the mechanisms and treatment of diseases of the human nervous system. All areas of clinical and basic neuroscience, including new technologies, cellular and molecular neurobiology, population sciences, and studies of behavior, addiction, and psychiatric diseases are of interest to the journal.

About Wiley-Blackwell

Wiley-Blackwell is the international scientific, technical, medical, and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes nearly 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit www.wileyblackwell.com or our new online platform, Wiley Online Library (wileyonlinelibrary.com), one of the world's most extensive multidisciplinary collections of online resources, covering life, health, social and physical sciences, and humanities.

Dawn Peters | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>