Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create New Map of Brain’s Immune System

18.02.2019

Versatile immune cells in the brain serve diverse functions / Changes in course of multiple sclerosis mapped for first time / Study in journal Nature refutes textbook opinion

A team of researchers under the direction of the Medical Center – University of Freiburg has created an entirely new map of the brain’s own immune system in humans and mice.


Single-cell analysis of microglia: Each point shows a cell, and the color signals how strongly particular immunologically significant genes are activated in the various cells.

Medical Center - University of Freiburg

The scientists succeeded in demonstrating for the first time ever that the phagocytes in the brain, the so-called microglia, all have the same core signature but adopt in different ways depending on their function. It was previously assumed that these are different types of microglia.

The discovery, made by means of a new, high-resolution method for analyzing single cells, is important for the understanding of brain diseases. Furthermore, the researchers from Freiburg, Göttingen, Berlin, Bochum, Essen, and Ghent (Belgium) demonstrated in detail how the human immune system in the brain changes in the course of multiple sclerosis (MS), which is significant for future therapeutic approaches. The study was published on 14. February 2019 in the journal Nature.

“We were able to show that there is only a single type of microglia in the brain that exist in multiple flavours,” says project head Prof. Dr. Marco Prinz, medical director of the Institute of Neuropathology at the Medical Center – University of Freiburg. “These immune cells are very versatile all-rounders, not specialists, as has been the textbook opinion up to now,” sums up Prof. Prinz.

Versatile All-Rounders, Not Specialists

Since the immune cells located in the blood cannot reach the brain and spinal cord on account of the blood–brain barrier, the brain needs its own immune defense: the microglia. These phagocytes of the brain develop very early on in the process of embryonic development and later remove invading germs and dead nerve cells. They contribute to the maturation and lifelong malleability of the brain. It was previously unclear whether there are subtypes of microglia for the various functions they serve in the healthy and diseased brain.

Researchers led by Prof. Prinz and the co-first authors of the study, Dr. Takahiro Masuda, Dr. Roman Sankowski, and Dr. Ori Staszewski from the Institute of Neuropathology at the Medical Center – University of Freiburg, conducted detailed studies on microgliain the brain, both on a mouse model and on human brain tissue removed from patients.

With the help of a new method for conducting single-cell analysis, the researchers were able to demonstrate the features of microglia in great detail. To do so, they used a microscope to study microglia in different brain regions and at different stages of development. They also analyzed the RNA-levels of these cells using single-cell analysis. The analyses revealed that microglia all have the same core signatures but adapt differently at different stages of development, in different brain regions, and depending on the function they are meant to serve.

Hope for Patients with Multiple Sclerosis

Dysregulated microglia are also involved in several brain diseases. In particular, they play a key role in the development of Alzheimer’s, multiple sclerosis (MS), and a few psychiatric diseases like autism. In the healthy brain, microglia form a uniform network around the nerve cells that can change in just a few minutes in the case of disease and form numerous new phagocytes to limit the damage.

“We now possess the first high-resolution immune cell atlas of the human brain. This also enables us to understand how these cells change during course of diseases like MS,” says Prof. Prinz, who is also involved in the Signalling Research Excellence Clusters BIOSS and CIBSS of the University of Freiburg. “In MS patients, we managed to characterize microglia in a state that is specific for multiple sclerosis. We hope that it will be possible in the future to target microglia subsets in harmful state.”

“It is extremely exciting to see how flexible the microglia can be,” says Prof. Prinz. The studies on the mouse model put the researchers on the right track. However, co-first author Dr. Masuda also succeeded in showing that human microglia are much more complex than those of laboratory animals. “The individual changes in the human brain also leave traces in the microglia in the course of life,” says Dr. Masuda.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Marco Prinz
Institute of Neuropathology
Medical Center – University of Freiburg
Telephone: +49 (0)761 270-51060
marco.prinz@uniklinik-freiburg.de

Originalpublikation:

Original title of the study: Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution
DOI: 10.1038/s41586-019-0924-x

Weitere Informationen:

https://www.nature.com/articles/s41586-019-0924-x study link
https://www.uniklinik-freiburg.de/neuropathology.html Neuropathology, University of Freiburg - Medical Center

Benjamin Waschow | idw - Informationsdienst Wissenschaft

More articles from Studies and Analyses:

nachricht New model connects respiratory droplet physics with spread of Covid-19
21.07.2020 | University of California - San Diego

nachricht Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus
03.07.2020 | Klinikum der Universität München

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Time To Say Goodbye: The MOSAiC floe’s days are numbered

31.07.2020 | Earth Sciences

Scientists find new way to kill tuberculosis

31.07.2020 | Life Sciences

Spin, spin, spin: researchers enhance electron spin longevity

31.07.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>