Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create Hybrid System of Human-Machine Interaction

17.06.2009
In a groundbreaking study, scientists at FAU have created a "hybrid" system to examine real-time interactions between humans and machines (virtual partners). By pitting human against machine, they open up the possibility of exploring and understanding a wide variety of interactions between minds and machines, and establishing the first step toward a much friendlier union of man and machine, and perhaps even creating a different kind of machine altogether.

For more than 25 years, scientists in the Center for Complex Systems and Brain Sciences (CCSBS) in Florida Atlantic University’s Charles E. Schmidt College of Science, and others around the world, have been trying to decipher the laws of coordinated behavior called “coordination dynamics”.

Unlike the laws of motion of physical bodies, the equations of coordination dynamics describe how the coordination states of a system evolve over time, as observed through special quantities called collective variables. These collective variables typically span the interaction of organism and environment. Imagine a machine whose behavior is based on the very equations that are supposed to govern human coordination. Then imagine a human interacting with such a machine whereby the human can modify the behavior of the machine and the machine can modify the behavior of the human.

In a groundbreaking study published in the June 3 issue of PLoS One and titled “Virtual Partner Interaction (VPI): exploring novel behaviors via coordination dynamics,” an interdisciplinary group of scientists in the CCSBS created VPI, a hybrid system of a human interacting with a machine. These scientists placed the equations of human coordination dynamics into the machine and studied real-time interactions between the human and virtual partners. Their findings open up the possibility of exploring and understanding a wide variety of interactions between minds and machines. VPI may be the first step toward establishing a much friendlier union of man and machine, and perhaps even creating a different kind of machine altogether.

“With VPI, a human and a ‘virtual partner’ are reciprocally coupled in real-time,” said Dr. J. A. Scott Kelso, the Glenwood and Martha Creech Eminent Scholar in Science at FAU and the lead author of the study. “The human acquires information about his partner’s behavior through perception, and the virtual partner continuously detects the human’s behavior through the input of sensors. Our approach is analogous to the dynamic clamp used to study the dynamics of interactions between neurons, but now scaled up to the level of behaving humans.”

In this first ever study of VPI, machine and human behaviors were chosen to be quite simple. Both partners were tasked to coordinate finger movements with one another. The human executed the task with the intention of performing in-phase coordination with the machine, thereby trying to synchronize his/her flexion and extension movements with those of the virtual partner’s. The machine, on the other hand, executed the task with the competing goal of performing anti-phase coordination with the human, thereby trying to extend its finger when the human flexed and vice versa. Pitting machine against human through opposing task demands was a way the scientists chose to enhance the formation of emergent behavior, and also allowed them to examine each partner’s individual contribution to the coupled behavior. An intriguing outcome of the experiments was that human subjects ascribed intentions to the machine, reporting that it was “messing” with them.

“The symmetry between the human and the machine, and the fact that they carry the same laws of coordination dynamics, is a key to this novel scientific framework,” said co-author Dr. Gonzalo de Guzman, a physicist and research associate professor at the FAU center. “The design of the virtual partner mirrors the equations of motion of the human neurobehavioral system. The laws obtained from accumulated studies describe how the parts of the human body and brain self-organize, and address the issue of self-reference, a condition leading to complexity.”

One ready application of VPI is the study of the dynamics of complex brain processes such as those involved in social behavior. The extended parameter range opens up the possibility of systematically driving functional process of the brain (neuromarkers) to better understand their roles. The scientists in this study anticipate that just as many human skills are acquired by observing other human beings; human and machine will learn novel patterns of behavior by interacting with each other.

“Interactions with ever proliferating technological devices often place high skill demands on users who have little time to develop these skills,” said Kelso. “The opportunity presented through VPI is that equally useful and informative new behaviors may be uncovered despite the built-in asymmetry of the human-machine interaction.”

While stable and intermittent coordination behaviors emerged that had previously been observed in ordinary human social interactions, the scientists also discovered novel behaviors or strategies that have never previously been observed in human social behavior. The emergence of such novel behaviors demonstrates the scientific potential of the VPI human-machine framework.

Modifying the dynamics of the virtual partner with the purpose of inducing a desired human behavior, such as learning a new skill or as a tool for therapy and rehabilitation, are among several applications of VPI.

“The integration of complexity in to the behavioral and neural sciences has just begun,” said Dr. Emmanuelle Tognoli, research assistant professor in FAU’s CCSBS and co-author of the study. “VPI is a move away from simple protocols in which systems are ‘poked’ by virtue of ‘stimuli’ to understanding more complex, reciprocally connected systems where meaningful interactions occur.”

Research for this study was supported by the National Science Foundation program “Human and Social Dynamics,” the National Institute of Mental Health’s “Innovations Award,” “Basic and Translational Research Opportunities in the Social Neuroscience of Mental Health,” and the Office of Naval Research Code 30. Kelso’s research is also supported by the Pierre de Fermat Chaire d’Excellence and Tognoli’s research is supported by the Davimos Family Endowment for Excellence in Science.

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>