Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salamanders shrinking due to climate change

26.03.2014

Wild salamanders living in some of North America’s best salamander habitat are getting smaller as their surroundings get warmer and drier, forcing them to burn more energy in a changing climate.

That’s the key finding of a new study co-authored by a Clemson University biologist and published Tuesday in the journal Global Change Biology that examined museum specimens caught in the Appalachian Mountains from 1957 to 2007 and wild salamanders measured at the same sites in 2011-2012.

The salamanders studied from 1980 onward were, on average, eight percent smaller than their counterparts from earlier decades. The changes were most marked in the Southern Appalachians and at low elevations, settings where detailed weather records showed the climate has warmed and dried out most.

“One of the stresses that warmer climates will impose on many organisms is warmer body temperatures,” said Michael W. Sears of the biological sciences department. “These warmer body temperatures cause animals to burn more energy while performing their normal activities. All else being equal, this means that there is less energy for growth.”

To find out how climate change affected the animals, Sears used a computer program to create an artificial salamander, which allowed him to estimate a typical salamander’s daily activity and the number of calories it burned.

Using detailed weather records for the study sites, Sears was able to simulate the minute-by-minute behavior of individual salamanders based on weather conditions at their home sites during their lifetimes. The simulation showed that modern salamanders were just as active as their ancestors had been.

“Ectothermic organisms, such as salamanders, cannot produce their own body heat,” Sears explained. “Their metabolism speeds up as temperatures rise, causing a salamander to burn seven to eight percent more energy in order to maintain the same activity as their forebears.”

The changing body size of salamanders is one of the largest and fastest rates of change ever recorded in any animal and the data recorded in this study reveals that it is clearly correlated with climate change, according to Karen R. Lips, associate professor at the University of Maryland’s (UMD) department of biology and co-author on the paper.

“We do not know if decreased body size is a genetic change or a sign that the animals are flexible enough to adjust to new conditions,” said Lips. “If these animals are adjusting, it gives us hope that some species are going to be able to keep up with climate change.”

The research team’s next step will be to compare the salamander species that are getting smaller to the ones that are disappearing from parts of their range. If they match, the team will be one step closer to understanding why salamanders are declining in a part of the world that once was a haven for them.

Clemson University
Ranked No. 21 among national public universities, Clemson University is a major, land-grant, science- and engineering-oriented research university that maintains a strong commitment to teaching and student success. Clemson is an inclusive, student-centered community characterized by high academic standards, a culture of collaboration, school spirit and a competitive drive to excel.

This material is based upon work supported by the University of Maryland and Smithsonian Institution Seed Grant Program. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the University of Maryland and Smithsonian Institution Seed Grant Program.

Michael W. Sears | EurekAlert!

Further reports about: Biology ancestors animals burn salamanders species temperatures

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>