Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising air pollution worsens drought, flooding, UMD-led study shows

14.11.2011
Increases in air pollution and other particulate matter in the atmosphere can strongly affect cloud development in ways that reduce precipitation in dry regions or seasons, while increasing rain, snowfall and the intensity of severe storms in wet regions or seasons, says a new study by a University of Maryland-led team of researchers.

The research provides the first clear evidence of how aerosols -- soot, dust and other small particles in the atmosphere -- can affect weather and climate; and the findings have important economic and water resource implications for regions across the United States and around the world, say the researchers and other scientists.

"Using a 10-year dataset of extensive atmosphere measurements from the U.S. Southern Great Plains research facility in Oklahoma [run by the Department of Energy's Atmospheric Radiation Measurement program] -- we have uncovered, for the first time, the long-term, net impact of aerosols on cloud height and thickness, and the resultant changes in precipitation frequency and intensity," says Zhanqing Li, a professor of atmospheric and oceanic science at Maryland and lead author of the study.

The scientists obtained additional support for these findings with matching results obtained using a cloud-resolving computer model. The study by Li and co-authors Feng Niu and Yanni Ding, also of the University of Maryland; Jiwen Fan of Pacific Northwest National Laboratory; Yangang Liu of Brookhaven National Laboratory, Upton, NY; and Daniel Rosenfeld of The Hebrew University of Jerusalem, is published in the Nov. 13 in Nature Geoscience.

"These new findings of long-term impacts, which we made using regional ground measurements, also are consistent with different findings we obtained from an analysis of NASA's global satellite products and have just published in a separate study. Together, they attest to the needs of tackling both climate and environmental changes that matter so much to our daily life," says Maryland's Li, who is also affiliated with Beijing Normal University."

"Our findings have significant policy implications for sustainable development and water resources, especially for those developing regions susceptible to extreme events such as drought and flood. Increases in manufacturing, building of power plants and other industrial developments are often accompanied with increases in pollution whose adverse impacts on weather and climate, as revealed in this study, can undercut economic gains," he stresses.

Tony Busalacchi, chair of the Joint Scientific Committee, World Climate Research Program notes the significance of the new findings. "Understanding interactions across clouds, aerosols, and precipitation is one of the grand challenges for climate research in the decade ahead, as identified in a recent major world climate conference. Findings of this study represent a significant advance in our understanding of such processes with significant implications for both climate science and sustainable development," says Busalacchi, who also is professor and director of the University of Maryland Earth System Science Interdisciplinary Center.

"We have known for a long time that aerosols impact both the heating and phase changes [condensing, freezing] of clouds and can either inhibit or intensify clouds and precipitation," says Russell Dickerson, a professor of atmospheric and oceanic science at Maryland. "What we have not been able to determine, until now, is the net effect. This study by Li and his colleagues shows that fine particulate matter, mostly from air pollution, impedes gentle rains while exacerbating severe storms. It adds urgency to the need to control sulfur, nitrogen, and hydrocarbon emissions."

According to climate scientist Steve Ghan of the Pacific Northwest National Laboratory, "This work confirms what previous cloud modeling studies had suggested, that although clouds are influenced by many factors, increasing aerosols enhance the variability of precipitation, suppressing it when precipitation is light and intensifying it when it is strong. This complex influence is completely missing from climate models, casting doubt on their ability to simulate the response of precipitation to changes in aerosol pollution."

Aerosol Science

Aerosols are tiny solid particles or liquid particles suspended in air. They include soot, dust and sulfate particles, and are what we commonly think of when we talk about air pollution. Aerosols come, for example, from the combustion of fossil fuels, industrial and agricultural processes, and the accidental or deliberate burning of fields and forests. They can be hazardous to both human health and the environment.

Aerosol particles also affect the Earth's surface temperature by either reflecting light back into space, thus reducing solar radiation at Earth's surface, or absorbing solar radiation, thus heating the atmosphere. This variable cooling and heating is, in part, how aerosols modify atmospheric stability that dictates atmospheric vertical motion and cloud formation. Aerosols also affect cloud microphysics because the serve as nuclei around which water droplets or ice particles form. Both processes can affect cloud properties and rainfall. Different processes may work in harmony or offset each other, leading to a complex yet inconclusive interpretation of their long-term net effect.

Greenhouse gases and aerosol particles are two major agents dictating climate change. The mechanisms of climate warming impacts of increased greenhouse gases are clear (they prevent solar energy that has been absorbed by the earth's surface from being radiated as heat back into space), but the climate effects of increased aerosols are much less certain. Until now, studies of the long-term effects of aerosols on climate change have been largely lacking and inconclusive because their mechanisms are much more sophisticated, variable, and tangled with meteorology.

"This study demonstrates the importance and value of keeping a long record of continuous and comprehensive measurements such as the highly instrumented (ARM) sites run by the Department of Energy's Office of Science, including the Southern Great Plains site, to identify and quantify important roles of aerosols in climate processes," says Stephen E. Schwartz, a scientist at Brookhaven National Laboratory. "While the mechanisms for some of these effects remain uncertain, the well-defined relationships discovered here clearly demonstrate the significance of the effects. Developing this understanding to represent the controlling processes in models remains a future challenge, but this study clearly points in important directions."

Support for this research was provided by the Department of Energy, NASA, the National Science Foundation and the Chinese Ministry of Science and Technology.

Media Contacts:

Zhanqing Li
University of Maryland
301-405-6699 (office)
443-538-8185 (cell)
zli@atmos.umd.edu
Lee Tune
Associate Director
Office of Public Affairs
University of Maryland
301-405-4679
ltune@umd.edu
For experts and the latest UM news, go to Newsdesk,
http://www.newsdesk.umd.edu/

Lee Tune | EurekAlert!
Further information:
http://www.umd.edu

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>