Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unravel protein's elusive role in embryo and disease development

03.03.2011
Research 'solves a longstanding mystery regarding the regulation of cell death pathways;' could lead to better cancer and autoimmune disease drugs

Reporting in Nature, scientists from Thomas Jefferson University have determined that a single protein called FADD controls multiple cell death pathways, a discovery that could lead to better, more targeted autoimmune disease and cancer drugs.

Twelve years ago, internationally-known immunologist Jianke Zhang, Ph.D., an associate professor in the Department of Microbiology and Immunology at Thomas Jefferson University, realized FADD, which stands for Fas-Associated protein with Death Domain, played an important role in embryonic development and the onset of some diseases, but he didn't know exactly why until now.

In the paper published online March 2, Dr. Zhang and researchers show this protein regulates not one but two types of cell deaths pivotal for embryo and disease development. It is now known that FADD causes apoptosis, the "healthy" cell death, while keeping necrosis, the "toxic" one, at bay.

Understanding this pathway is instrumental in developing drugs with selectivity and fewer side effects, said Dr. Zhang, a member of the Kimmel Cancer Center at Jefferson,

"This work has direct impact on our understanding of diseases: cancer, autoimmune disease, immune-deficiency disease," he said. "This is the one gene that regulates these two processes in cells, so now we can find targeted drugs to control the cell death process."

The research suggests that with the absence or variation in expression of this one protein, an embryo may not develop properly or a person may develop disease later in life.

"This breakthrough is a testimony to Dr. Zhang's research acumen and dogged determination to solve a longstanding mystery regarding the regulation of cell death pathways," said Tim Manser, Ph.D., professor and chair of the Department of Microbiology and Immunology at Jefferson. "It is gratifying to know that Thomas Jefferson University provides the research infrastructure that allows outstanding researchers like Dr. Zhang to make seminal discoveries, such as those reported in the Nature paper."

FADD's importance in embryogenesis and lymphocyte death response has been known, but the mechanism that underlies these functions in FADD has remained elusive.

Researchers found that mice that did not express FADD contained raised levels of RIP1, Receptor-Interacting Protein 1, an important protein that mediates necrosis and the apoptotic processes, and their embryonic development failed due to massive necrosis.

"When the FADD-mediated death process is deregulated, we will produce white bloods cells that will attack our own tissue, which is the cause of auto-immune diseases, such as arthritis and lupus," said Dr. Zhang. "And without the necessary cell deaths that are required for tumor surveillance, humans could develop cancer."

There are drugs currently under development today that activate TNF-a-related apoptosis-inducing ligand (TRAIL) death receptor signaling, which induces apoptosis through FADD in cancer cells specifically, but its mechanisms are not well understood and the treatment not perfected. There are also tumor cells that are resistant to TRAIL-induced apoptosis for unknown causes.

"The killing of these tumor cells is not efficient, and this paper actually figured out why," said Dr. Zhang. "We now know that the FADD protein, while required for apoptotic death, is inhibiting necrotic death in tumor cells."

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>