Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers simplify tiny structures' construction drip by drip

12.11.2018

Popping the top on house paint usually draws people to look inside the can. But Princeton researchers have turned their gaze upward, to the underside of the lid, where it turns out that pattern of droplets could inspire new ways to make microscopically small structures.

The trick comes in controlling the droplets, which form under competing influences like gravity and surface tension. A new study, published Oct. 26 in the journal Nature Communications, explains how a deeper understanding of these highly dynamic, sometimes unstable forces can be harnessed to cheaply and quickly fabricate objects that normally require a more expensive and time-consuming process.


Shown are three lab samples in descending size. The rings were cured in a centrifuge using acceleration to control the length scale of the droplet structures, which can be used to create biomimetic devices like artificial compound eyes or ciliary carpets.

Credit: Pierre-Thomas Brun

"We've done away with the molds," said Pierre-Thomas Brun, assistant professor of chemical and biological engineering at Princeton and the principal investigator for the study. "We don't need a clean room or any fancy equipment, so engineers have much more freedom in the design process."

Using a silicone common in medical devices, the team poured a thin liquid film over the surface of a plate, about the size of a compact disc, which they then flipped upside down for several minutes while the film cured.

Without intervention, the liquid silicone congeals into an irregular array of droplets -- much like the paint under a lid. But by etching the plate with mathematical precision, using lasers to cut the marks, the researchers "seeded" the droplets into a lattice of perfect hexagons, each with a uniform dimension.

"Gravity wants to pull the fluid down," said Joel Marthelot, postdoctoral research associate at Princeton and lead author on the paper.

"Capillary forces want the surface to deform minimally. So there is a competition between these two forces, which gives rise to the length scale of the structure."

More sophisticated versions of the experiment used a centrifuge in place of gravity, which allowed the team to vary the size of the drops with an indefinite range. Instead of plates, in this version they used plastic cylinders that look like clear hockey pucks.

The excess fluid spun off and left their predictable pattern of cured drops. The technique worked down to the limit of their machinery, which produced a lattice of structures that were each around 10 microns, a fraction of the width of a human hair. The structures, which are prototypes, simulate the kinds of soft lenses that are a common part in smartphones.

"The faster it spins, the smaller the drops," Marthelot said, noting that they could make structures even smaller than what they had achieved so far. "We don't really know the limit of our technique. Only the limit of our centrifuge."

According to Brun, the kinds of mechanical instabilities that cause this behavior are usually regarded by engineers as a kind of nemesis. They are the physical thresholds that determine weight loads or heat capacities. "In this case," he said, "we took advantage of something that is normally seen as bad. We tamed it and made it functional by turning it into a pathway to fabrication."

The technique can be easily expanded to large-scale manufacturing, the researchers said. As their methods evolve, they plan to create biomimetic devices, like an inflatable compound lens that mimics the eye of an insect, or soft robots that can be used in medical technologies.

"One can envision a wide range of potential future application," said Jörn Dunkel, associate professor of mathematics at the Massachusetts Institute of Technology, "from drag-reducing or superhydrophobic surfaces to micro-lenses and artificial ciliary carpets."

###

In addition to Brun and Marthelot, two other researchers contributed to the study: Elizabeth Strong, formerly a student at MIT and now a Ph.D. candidate at the University of Colorado, Boulder; and Pedro M. Reis of the Ecole Polytechnique Fédérale de Lausanne.

Scott Lyon | EurekAlert!
Further information:
https://engineering.princeton.edu/news/2018/11/07/researchers-simplify-tiny-structures-construction-drip-drip
http://dx.doi.org/10.1038/s41467-018-06984-7

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>