Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal potential treatment for sickle cell disease

02.11.2011
Laboratory study at University of Michigan Health System shows increasing TR2/TR4 expression can lead to higher fetal hemoglobin levels in sickle cell patients

A University of Michigan Health System laboratory study reveals a key trigger for producing normal red blood cells that could lead to a new treatment for those with sickle cell disease.

The study, conducted in mice, appears in this week's early edition of the Proceedings of the National Academy of Sciences, and holds promise for preventing the painful episodes and organ damage that are common complications of sickle cell disease.

According to the U-M study, increasing the expression of the proteins, TR2 and TR4, more than doubled the level of fetal hemoglobin produced in sickle cell mice and reduced organ damage.

It's the first time specific proteins have been targeted to prevent a disease, authors say.

"The vast majority of sickle cell disease patients are diagnosed early in childhood when adult hemoglobin normally replaces fetal hemoglobin, but the severity of the disease can differ markedly, correlating most strongly with the level of fetal hemoglobin present in red cells," says pediatrician and lead study author Andrew D. Campbell, M.D., director of the Pediatric Comprehensive Sickle Cell Program at the U-M Cancer Center.

Sickle cell is an inherited blood disorder impacting hundreds of thousands of patients worldwide that causes normal red blood cells to change shape to a crescent moon.

The result is life-long debilitating pain episodes, chronic organ damage and significantly shortened life span. But a small number of sickle cell patients are born with a high enough fetal hemoglobin level to moderate these complications.

The study team, that included pediatric hematologists, cell and developmental biologists and pathology experts at U-M and the University of Tsukuba, Japan, demonstrated a potential method for boosting the fetal hemoglobin levels by modulating TR2/TR4 expression.

"While the average fetal hemoglobin was 7.6 percent in the sickle cell mice, the TR2/TR4 treated sickle cell mice had an average fetal hemoglobin of 18.6 percent," says senior study author James Douglas Engel, Ph.D. , professor and chair of the U-M's Cell and Development Biology Department.

He adds that anemia and red blood cell turnover all improved within the TR2/TR4 mice. Additional studies, including clinical trials, would be requiredto determine if the technique could help humans.

"Currently hydroxyurea is the only FDA approved drug known to increase the levels of fetal hemoglobin within sickle cell disease patients and a substantial number of patients do respond to it," says Campbell, the pediatric hematology oncology specialist. "But the long term consequences for hydroxyurea are unknown, especially in children."

Authors: Andrew D. Campbell, Shuaiying Cui, Lihong Shi, Rebekah Urbonya, Andrea Mathias, Kori Bradley, Kwaku O. Bonsua, Rhonda R. Douglas, Brittne Halford, Lindsay Schmidt, David Harro, Donald Giacherio, Keiji Tanimoto, Osamu Tanabe, and James Douglas Engel.

Reference: "Forced TR2/TR4 Expression in Sickle Cell Disease Mice Confers Enhanced Fetal Hemoglobin Synthesis and Alleviated Disease Phenotypes," Proceedings of the National Academy of Sciences, Oct. 31, 2011.

Funding: Authors work was supported by the American Heart Association, Cooley's Anemia Foundation, Robert Wood Johnson Foundation and the National Institutes of Health's National Heart Lung and Blood Institute.

Resources
Department of Cell and Developmental Biology
http://www.med.umich.edu/cdb/
U-M Sickle Cell Program
http://www.med.umich.edu/sicklecell/
University of Michigan Comprehensive Cancer Center
http://www.cancer.med.umich.edu/

Shantell M. Kirkendoll | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Virtual "moonwalk" for science reveals distortions in spatial memory
18.11.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Autonomous Agriculture in 2045?
15.11.2019 | Fraunhofer-Institut für Experimentelles Software Engineering IESE

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>