Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers closer to understanding the evolution of sound production in fish

16.12.2011
An international team of researchers studying sound production in perch-like fishes has discovered a link between two unrelated lineages of fishes, taking researchers a step closer to understanding the evolution of one of the fastest muscles in vertebrates.

Understanding the evolution of such fast muscles has been difficult for researchers because slow movement of a swimbladder does not generate sound.

In a study published online Nov. 29 in the journal Frontiers in Zoology, Virginia Commonwealth University biologists, together with researchers Hin-Kiu Mok, Ph.D., at the National Sun Yat-sen University in Taiwan, and Eric Parmentier, Ph.D., at the Université de Liège in Belgium, have found that the pearl-perch belonging to the fish order Perciformes utilizes a hybrid system with characteristics of slow and fast systems. The findings suggest an intermediate condition in the evolution of superfast sonic muscles that drive swimbladder vibration directly. Perciforms are one of the largest orders of vertebrates.

"This work for the first time demonstrates an intermediate condition in the potential evolution of these superfast muscles," said investigator Michael Fine, Ph.D., professor of biology at VCU, who served as corresponding author for the study.

"It's sort of like finding a fossil whale with leg bones indicating affinity to a terrestrial vertebrate, or a dinosaur with feathers indicating potential steps in the evolution of reptiles into birds," he said.

According to Fine, a number of fish produce sounds by contracting superfast muscles that vibrate the swimbladder to produce aggressive and courtship calls. For example, in the oyster toadfish found on the east coast of the United States, swimbladder muscles routinely contract more than 200 times a second when a male is calling for a mate. Fine and his colleagues recently found a group of fishes that produce sound by using slow muscles to pull the swimbladder, which then snaps back - like a rubber band - to produce sound. In this case the pearl perch has a hybrid system that uses a slow system but actually pulls the swimbladder forward with a fast muscle. The fish has a tendon that gets stretched and causes the bladder to snap back, producing the loud part of the sound.

"What is special about this perciform is that its sound producing system appears to have intermediate characteristics between slow systems which are only known in ophidiiform fishes, and fast muscles present in different groups of fishes," he said.

The work was supported in part by a grant from the National Science Council of Taiwan and the F.R.S.-FNRS in Belgium.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 216 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see http://www.vcu.edu

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>