Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows runners can improve health and performance with less training

31.05.2012
The new 10-20-30 training concept can improve both a person's running performance and health, despite a significant reduction in the total amount of training. This is the conclusion of a study from University of Copenhagen researchers just published in the renowned scientific Journal of Applied of Physiology.

Over the course of seven weeks, runners were able to improve performance on a 1500-metre run by 23 seconds and almost by a minute on a 5-km run – and this despite a 50 per cent reduction in their total amount of training.

These are just some of the results from a research project involving 18 moderately trained runners following the 10-20-30 training concept developed by researchers from the Department of Exercise and Sport Sciences at the University of Copenhagen.

In addition to enhancing running performance, the runners from the project also had a significant decrease in blood pressure and a reduction in cholesterol in the blood.

"We were very surprised to see such an improvement in the health profile considering that the participants have been running for several years," says Professor Jens Bangsbo, Department of Exercise and Sport Sciences, who heads the project.

"The results show that the very intense training has a great potential for improving health status of already trained individuals," says Professor Bangsbo.

PhD student Thomas Gunnarsson adds that the emotional well-being of the participants also improved over the span of the project.

"We found a reduction in emotional stress when compared to control subjects continuing their normal training based on a recovery-stress questionnaire administered before and after the 7-week training period," explains Gunnarsson.

The 10-20-30 training concept

The 10-20-30 training concept consists of a 1-km warm-up at a low intensity followed by 3-4 blocks of 5 minutes running interspersed by 2 minutes of rest. Each block consists of 5 consecutive 1-minute intervals divided into 30, 20 and 10 seconds of running at a low, moderate and near maximal intensity, respectively.

30 minutes is all you need

According to Professor Bangsbo, the 10-20-30 training concept is easily adapted in a busy daily schedule as the time needed for training is low. A total of 20-30 minutes including warm-up is all that is needed. Since the 10-20-30 concept deals with relative speeds and includes low speed running and 2-minute rest periods, individuals with different fitness levels and training backgrounds can perform the 10-20-30 training together.

"The training was very inspiring. I could not wait to get out and run together with the others. Today, I am running much faster than I ever thought possible," says Katrine Dahl, one of the participants in the study.

The study was supported by the Nordea-fonden, Copenhagen, Denmark, and the results are published in the Journal of Applied of Physiology.

Jens Bangsbo | EurekAlert!
Further information:
http://www.ifi.ku.dk

More articles from Studies and Analyses:

nachricht ECG procedure indicates whether an implantable defibrillator will extend a patient's life
02.09.2019 | Technische Universität München

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>