Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New report puts real numbers behind history of oyster reefs

13.06.2012
First-ever quantitative assessment is a breakthrough for coastal restoration efforts

In an effort to advance the field of coastal restoration, The Nature Conservancy and a team of scientists from more than a dozen management agencies and research institutions led by the University of Cambridge conducted an in-depth study of oyster reef area and, for the first time, the actual biomass (the "living weight") of oyster reefs in dozens of estuaries throughout the United States.

'Historical ecology with real numbers', published today in Proceedings of the Royal Society B, presents the first truly quantitative estimates of decline in oyster habitat over such a large spatial and temporal scale.

The findings show that while that oyster reef area declined by 64% over the last century, the total biomass, or living weight of oysters on reefs, had dropped by 88% during this period, revealing that simple physical area is an unreliable indicator of habitat status.

The good news, according to lead author Dr. Philine zu Ermgassen of University of Cambridge, is that the study gives a much-needed historical picture of conditions in specific bays and estuaries, something that will aid in future restoration efforts.

"Oysters were a valuable resource, even a century ago, so government surveyors mapped vast acreages and built up a story of a critically important habitat in wonderful detail," said Dr. zu Ermgassen. "Although somewhat unfamiliar to us here in Europe the humble oyster was once so numerous, both here and in the United States, that it formed large physical structures – oyster reefs – that rose up in banks off the sea bed.
"Using meticulous records compiled 100 years ago, we have been able to accurately quantify the changes in oyster reefs over time. Anecdotes have been converted to hard facts. Of course there have been huge losses in area, but that is only part of the story. We've also noted changes in density and structure of the remaining oysters, such that what is left is a much depleted habitat. Managers and scientists need to pay closer attention to density when setting restoration or conservation objectives."

"In addition to aiding restoration, the study will inspire it," says co-author Dr. Mark Spalding, a lead scientist with The Nature Conservancy's Global Marine Program, and also based at Cambridge. Indeed, the authors are keen to point out that the US is leading the world in turning things around for these habitats, with restoration work underway in numerous estuaries to restore oyster habitat.
"This is a call to action, and these findings will provide funders and managers with a powerful baseline – a clear vision of how things were – and an opportunity to establish meaningful goals and targets. The findings have implications beyond oyster reefs, however. Almost all of our concerns about the loss of natural areas – from forests and wetlands to seagrass meadows and kelp beds – are based on an estimation of change in area," said Dr. Spalding. "This study shows that the losses may be even worse than we thought, because the quality of the remaining patches of habitat may be so diminished that it is not providing the function we expect from any given area."

Funding support for this study was provided by the National Fish and Wildlife Foundation (NFWF), the National Partnership between TNC and NOAA Restoration Center, The Turner Foundation and the TNC-Shell Partnership.
For additional information, please contact:

Lead author: Dr. Philine zu Ermgassen, Department of Zoology, University of Cambridge. philine.zuermgassen@cantab.net

The Nature Conservancy contacts: Dr. Rob Brumbaugh (rbrumbaugh@tnc.org) and Dr. Mark Spalding (mspalding@tnc.org), Global Marine Team, The Nature Conservancy.

Notes to Editors:

1. Citation: Zu Ermgassen, P. S. E., Spalding, M. D., Blake, B., Coen, L. D., Dumbauld, B., Geiger, S., Grabowski, J. H., Grizzle, R., Luckenbach, M., McGraw, K., Rodney, B., Ruesink, J. L., Powers, S. P., and Brumbaugh, R., 2012, Historical ecology with real numbers: Past and present extent and biomass of an imperilled estuarine habitat: Proceedings of the Royal Society B: Biological Sciences. The paper was published on Wednesday 13 June.

2. Co-authors and Institutional Affiliations:
Brady Blake, Washington State Department of Fish and Wildlife, Point Whitney Shellfish Laboratory
Dr. Loren D. Coen, Department of Biological Sciences, Florida Atlantic University
Dr. Brett Dumbauld, USDA Agricultural Research Service, Hatfield Marine Science Center
Dr. Steve Geiger, Florida Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission
Dr. Jonathan H. Grabowski, Northeastern University
Dr. Raymond Grizzle, Dept. of Biological Sciences, University of New Hampshire
Dr. Mark Luckenbach, Virginia Institute of Marine Sciences, College of William and Mary
Dr. Kay McGraw, National Oceanic and Atmospheric Administration Restoration Center
William Rodney, Texas Parks and Wildlife Department, Dickinson Marine Laboratory
Dr. Jennifer Ruesink, Department of Biology, University of Washington
Dr. Sean P. Powers, Department of Marine Sciences, University of South Alabama

Philine zu Ermgassen | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>