Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study increases concerns about climate model reliability

12.12.2007
A new study comparing the composite output of 22 leading global climate models with actual climate data finds that the models do an unsatisfactory job of mimicking climate change in key portions of the atmosphere.

This research, published on-line Wednesday in the Royal Meteorological Society’s International Journal of Climatology*, raises new concerns about the reliability of models used to forecast global warming.

“The usual discussion is whether the climate model forecasts of Earth’s climate 100 years or so into the future are realistic,” said the lead author, Dr. David H. Douglass from the University of Rochester. “Here we have something more fundamental: Can the models accurately explain the climate from the recent past?

“It seems that the answer is no.”

Scientists from Rochester, the University of Alabama in Huntsville (UAH) and the University of Virginia compared the climate change “forecasts” from the 22 most widely-cited global circulation models with tropical temperature data collected by surface, satellite and balloon sensors. The models predicted that the lower atmosphere should warm significantly more than it actually did.

“Models are very consistent in forecasting a significant difference between climate trends at the surface and in the troposphere, the layer of atmosphere between the surface and the stratosphere,” said Dr. John Christy, director of UAH's Earth System Science Center. “The models forecast that the troposphere should be warming more than the surface and that this trend should be especially pronounced in the tropics.

“When we look at actual climate data, however, we do not see accelerated warming in the tropical troposphere. Instead, the lower and middle atmosphere are warming the same or less than the surface. For those layers of the atmosphere, the warming trend we see in the tropics is typically less than half of what the models forecast.”

The 22 climate models used in this study are the same models used by the UN Intergovernmental Panel of Climate Change (IPCC), which recently shared a Nobel Peace Prize with former Vice President Al Gore.

The atmospheric temperature data were from two versions of data collected by sensors aboard NOAA satellites since late 1979, plus several sets of temperature data gathered twice a day at dozens of points in the tropics by thermometers carried into the atmosphere by helium balloons. The surface data were from three datasets.

After years of rigorous analysis and testing, the high degree of agreement between the various atmospheric data sets gives an equally high level of confidence in the basic accuracy of the climate data.

“The last 25 years constitute a period of more complete and accurate observations, and more realistic modeling efforts,” said Dr. Fred Singer from the University of Virginia. “Nonetheless, the models are seen to disagree with the observations. We suggest, therefore, that projections of future climate based on these models should be viewed with much caution.”

The findings of this study contrast strongly with those of a recent study** that used 19 of the same climate models and similar climate datasets. That study concluded that any difference between model forecasts and atmospheric climate data is probably due to errors in the data.

“The question was, what would the models ‘forecast’ for upper air climate change over the past 25 years and how would that forecast compare to reality?” said Christy. “To answer that we needed climate model results that matched the actual surface temperature changes during that same time. If the models got the surface trend right but the tropospheric trend wrong, then we could pinpoint a potential problem in the models.

“As it turned out, the average of all of the climate models forecasts came out almost like the actual surface trend in the tropics. That meant we could do a very robust test of their reproduction of the lower atmosphere.

“Instead of averaging the model forecasts to get a result whose surface trends match reality, the earlier study looked at the widely scattered range of results from all of the model runs combined. Many of the models had surface trends that were quite different from the actual trend,” Christy said. “Nonetheless, that study concluded that since both the surface and upper atmosphere trends were somewhere in that broad range of model results, any disagreement between the climate data and the models was probably due to faulty data.

“We think our experiment is more robust and provides more meaningful results.”

Jennifer Beal | alfa
Further information:
http://www3.interscience.wiley.com/cgi-bin/abstract/117857349/ABSTRACT

More articles from Studies and Analyses:

nachricht New model connects respiratory droplet physics with spread of Covid-19
21.07.2020 | University of California - San Diego

nachricht Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus
03.07.2020 | Klinikum der Universität München

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>