Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds first-ever genetic animal model of autism

10.12.2007
Research may further understanding of autism in humans

By introducing a gene mutation in mice, investigators have created what they believe to be the first accurate model of autism not associated with a broader neuropsychiatric syndrome, according to research presented at the American College of Neuropsychopharmacology annual meeting.

This animal model could help researchers better understand abnormal brain function in autistic humans, which could help them identify and improve treatment strategies. Broader neuropsychiatric conditions include Fragile X, the most common cause of inherited mental impairment, and Rett Syndrome, a childhood neurodevelopmental disorder characterized by normal early development followed by slowed brain and head growth, seizures, and mental retardation.

Autism is a neuropsychiatric disorder characterized by repetitive behaviors and by impairment in social interactions and communication skills. These symptoms can coexist with either enhanced or decreased cognitive abilities and skills.

“Prior to this study we knew next to nothing about the mechanisms of autism in the brain,” says study researcher Craig M. Powell, M.D., Ph.D., assistant professor of neurology and psychiatry at the University of Texas Southwestern Medical Center at Dallas. “With this research, we can study changes in the brain that lead to autistic behaviors and symptoms, which may help us understand more about progression and treatment of the disorder.”

The research team, led by Thomas Südhof, M.D., professor and chairman of neuroscience at UT Southwestern, replaced the normal mouse neurologin-3 gene with a mutated neuroligin-3 gene associated with autism in humans. By doing so, the team was able to create a gene in the mice that is similar to the human autism disease gene. While the result amounted to a very small change in their genetic makeup, it perfectly mimicked the same small change occurring in some patients with human autism.

Dr. Powell studied the genetically altered mice and found that, when examined in behavioral tests that may reflect key signs of autism, they showed decreased social interaction with other mice; other traits, such as anxiety, coordination and pain sensitivity, were unaffected. These social interaction deficits, Dr. Powell says, are hallmark features of human autism. In addition, the mice showed enhanced spatial learning abilities, which may resemble the enhanced cognitive abilities in autistic savants (people who have a severe developmental or mental handicap as well as extraordinary mental abilities).

“These findings could be especially helpful in identifying novel treatment approaches. We already know that inhibitory chemical synaptic transmission from one neuron to the next is increased in this mouse model. Now we can test drugs that decrease this effect directly in the mice and ask whether this reverses their social interaction deficits,” Dr. Powell says. “For now, the mainstay of autism treatment is still behavioral therapy. The earlier we can get patients involved with behavioral interventions, the better off people with autism will be.” Dr. Powell adds that the model gives researchers insight into mouse brains which share important parallels with brains of living humans, which can only be studied in limited ways with the use of new brain imaging tools.

Sharon Reis | EurekAlert!
Further information:
http://www.acnp.org/

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Researchers discover surprising quantum effect in hard disk drive material

26.04.2019 | Physics and Astronomy

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>