Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature Study: Is modern Arctic Ocean Circulation exceptional?

03.12.2007
The Arctic Ocean only has a limited exchange with the global ocean, whereby the Fram Strait between Greenland and Svalbard is the only deep water connection to the Atlantic Ocean. It is this connection that supplies oxygen to the deep Arctic Ocean.

Today a pronounced and stable freshwater layer at the surface originating from inputs of the large Russian rivers almost completely prevents any significant deep water formation in the Arctic Ocean itself. The results of Brian Haley and colleagues from the IFM-GEOMAR now show that this was an exception rather than the rule for most of the past 15 million years.

The Kiel team made their discovery when they carried out geochemical analyses on sediments of the Arctic Coring Expedition (ACEX, Leg 302 of the Integrated Ocean Drilling Program (IODP)) and of a RV Polarstern expedition, which had been recovered near the North Pole on the Lomonosov Ridge between 1.000 und 1.200 m water depth. They reconstructed the seawater isotope ratio of the element neodymium (143Nd/144Nd) from the sediments. The Nd, which has characteristic isotope ratios in rocks as a function of their type and age, is transported to the ocean through weathering, where it provides information on the sources of water masses. To their surprise, the geochemists found that the isotope signature of the seawater was strongly different from the present day values, with the exception of the warm periods of the past 400.000 years. “It is even more surprising that this isotope signature indicated a pronounced influence of the weathering of basaltic rocks”, says Brian Haley. On the Circum-arctic landmasses such rocks, however, only exist in the form of the Siberian “Putorana flood basalts”.

From this geologically unique setting and taking into account the evolution of the continental ice sheets of the past 140.000 years, it was then possible to reconstruct the circulation history of the deep Arctic Ocean. The signature of the basalts can only have arrived at 1.000 m water depth in the central Arctic Ocean if vast amounts of new sea ice formed near the basalt areas in the Kara Sea area. How did the signature arrive at the seafloor? “During sea ice formation the salt of the sea water freezes out and is rejected, thereby forming highly saline brines, which were denser than the surrounding sea water. These brines sank and transported the dissolved Nd isotope signature of the basalts to the sea floor where the sediment cores were recovered”, explains Martin Frank, co-author of the study. Further, the obtained Nd isotope variations imply that the inflow of Atlantic waters was significantly reduced during most of the past 15 million years and during the glacial periods of the past 400.000 years. This also suggests that during these periods of time the main area of Atlantic deep water formation was not located in the Norwegian-Greenland Sea, similar to today, but further south.

The arctic IODP ACEX drilling project was coordinated by the European consortium ECORD (European Consortium for Ocean Research Drilling). This organization consists of partners from 17 European nations participating in the „International Ocean Drilling Programme“. ECORD is also responsible for the planning and coordination of special operations, for which normal drilling vessels cannot be used, as was the case for the ACEX project. For such purposes special platforms are used to achieve the scientific goals.

Andreas Villwock | alfa
Further information:
http://www.ifm-geomar.de/index.php?id=3887&L=1

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>