Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows climate change triggers wars and population decline

23.11.2007
Reduced agricultural productivity seems to initiate conflict

Climate change may be one of the most significant threats facing humankind. A new study shows that long-term climate change may ultimately lead to wars and population decline.

The study, published November 19 in the early edition of the journal Proceedings of the National Academy of Sciences (PNAS), revealed that as temperatures decreased centuries ago during a period called the Little Ice Age, the number of wars increased, famine occurred and the population declined.

Data on past climates may help accurately predict and design strategies for future large and persistent climate changes, but acknowledging the historic social impact of these severe events is an important step toward that goal, according to the study’s authors.

“Even though temperatures are increasing now, the same resulting conflicts may occur since we still greatly depend on the land as our food source,” said Peter Brecke, associate professor in the Georgia Institute of Technology’s Sam Nunn School of International Affairs and co-author of the study.

This new study expands previous work by David Zhang of the University of Hong Kong and lead author of the study.

“My previous research just focused on Eastern China. This current study covers a much larger spatial area and the conclusions from the current research could be considered general principles,” said Zhang.

Brecke, Zhang and colleagues in Hong Kong, China and the United Kingdom perceived a possible connection between temperature change and wars because changes in climate affect water supplies, growing seasons and land fertility, prompting food shortages. These shortages could lead to conflict – local uprisings, government destabilization and invasions from neighboring regions – and population decline due to bloodshed during the wars and starvation.

To study whether changes in temperature affected the number of wars, the researchers examined the time period between 1400 and 1900. This period recorded the lowest average global temperatures around 1450, 1650 and 1820, each separated by slight warming intervals.

The researchers collected war data from multiple sources, including a database of 4,500 wars worldwide that Brecke began developing in 1995 with funding from the U.S. Institute of Peace. They also used climate change records that paleoclimatologists reconstructed by consulting historical documents and examining indicators of temperature change like tree rings, as well as oxygen isotopes in ice cores and coral skeletons.

Results showed a cyclic pattern of turbulent periods when temperatures were low followed by tranquil ones when temperatures were higher. The number of wars per year worldwide during cold centuries was almost twice that of the mild 18th century.

The study also showed population declines following each high war peak, according to population data Brecke assembled. The population growth rate of the Northern Hemisphere was elevated from 1400-1600, despite a short cooling period beginning in the middle of the 15th century. However, during the colder 17th century, Europe and Asia experienced more wars of great magnitude and population declines.

In China, the population plummeted 43 percent between 1620 and 1650. Then, a dramatic increase in population occurred from 1650 until a cooling period beginning in 1800 caused a worldwide demographic shock.

The researchers examined whether these average temperature differences of less than one degree Celsius were enough to cause food shortages. By assuming that agricultural production decreases triggered price increases, they showed that when grain prices reached a certain level, wars erupted. The ecological stress on agricultural production triggered by climate change did in fact induce population shrinkages, according to Brecke.

Global temperatures are expected to rise in the future and the world’s growing population may be unable to adequately adapt to the ecological changes, according to Brecke.

“The warmer temperatures are probably good for a while, but beyond some level plants will be stressed,” explained Brecke. “With more droughts and a rapidly growing population, it is going to get harder and harder to provide food for everyone and thus we should not be surprised to see more instances of starvation and probably more cases of hungry people clashing over scarce food and water.”

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>