Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanotubes to be replaced by MoSIx nanowires in high-tech devices

23.11.2007
Structural and physical properties of Mo6SxI9-x molecular nanowires

Carbon nanotubes have long been touted as the wonder material of the future. Applications cited for carbon nanotubes range from super fast computers and ultra small electronics through to materials that are lightweight yet super strong and tougher than diamond.

Several techniques have been devised for producing carbon nanotubes but, getting these materials and devices from the laboratory to the marketplace is obstructed by one inherent problem. Scaling up laboratory production techniques to produce commercial quantities of high quality, high purity carbon nanotubes is a difficult process. But this is set to change with another type of recently discovered nanotube currently under investigation.

This promising new material is molybdenum-sulfur-iodine nanowires. Researchers from Jožef Stefan Institute have investigated the atomic and electronic structure of molybdenum-sulfur-iodine molecular nanowires as well as their basic transport, optical and mechanical properties. The research has now been published in a special edition of the open access journal, AZoJono and can be accessed in its entirety at http://www.azonano.com/Details.asp?ArticleID=2039.

This special edition of AZoJono* features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and applications of nanotubes, nanowires and nanotube arrays for industrial technology.

The research team of D. Dvorsek, D. Vengust, V. Nicolosi, W.J. Blau, J.C. Coleman and D. Mihailovic found that the material also known as MoSIx nanowires was relatively easy to synthesise and disperse making it highly suited to commercialisation. The properties of the nanowires point to them being suited for use in applications such as battery electrodes, tribology and field emission displays. Ongoing research will look at growth mechanisms, stoichiometry control, magnetoelasticity and electrostrictive properties.

Ian Birkby | EurekAlert!
Further information:
http://www.azonano.com/Details.asp?ArticleID=2039

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>