Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU research team makes progress toward 'printing' organs

08.11.2007
Biology-based process maintains cell properties and lets nature do the rest

Each year, pharmaceutical companies invest millions of dollars to test drugs, many of which will never reach the market because of side effects found only during human clinical trials. At the same time, the number of patients waiting for organ transplants continues to increase. In the past 10 years, this number has nearly doubled. Now, a new study led by a University of Missouri-Columbia physics researcher might present new solutions to both problems with the help of a very special printer.

For the past four years, Gabor Forgacs, the George H. Vineyard Professor of Physics in the MU College of Arts and Science, has been working to refine the process of “printing” tissue structures of complex shape with the aim of eventually building human organs. In the latest study, a research team led by Forgacs determined that the process of building such structures by printing does not harm the properties of the composing cells and the process mimics the naturally occurring biological assembly of living tissues.

In the study, the team used bio-ink particles, or spheres containing 10,000 to 40,000 cells, and assembled, or “printed,” them on to sheets of organic, cell friendly “bio-paper.” Once printed, the spheres began to fuse in the bio-paper into one structure, much the same way that drops of water will fuse to form a larger drop of water.

“If you wait for a long time, eventually all the small spheres will fuse into one large sphere,” Forgacs said. “To prevent that from happening, we can remove the bio-paper and stop the fusion process once the desired shape has formed. Through this bio-printing process, we were able to build, for the first time, functional tissue structures.”

In the past, there have been two concerns with printing extended tissue structures using large amounts of cells. First, scientists needed to determine how to get specific cells to the correct locations within the structures. Second, even though the right cells might be in the right place within the structure, there was a problem of function. How do you make an organ start working?

As the Mizzou research team found in the study, there appears to be no need to worry about either of these concerns. As the tissue structure begins to form, the cells go through a natural process called “sorting,” which is nature’s way of determining where specific cells need to be. For example, an artery has three specific types of cells – endothelial cells, smooth muscle cells and fibroblast cells, each type needing to be in a specific location in the artery. As thousands and thousands of cells are added to the bio-paper under controlled conditions, the cells migrate automatically to their specific locations to make the structure form correctly.

The team also found that nature was the answer to the second question. In the study, scientists took cells from a chicken heart and used them to form bio-ink particles, which were then printed on to thick sheets. Heart cells must be synchronized for the heart to beat properly. When the bio-ink particles were first printed, the cells did not beat in unison, but as the cellular spheroids fused, the structure eventually started beating just as a heart does.

“This study shows that we can use multiple cell types and that we do not have to control what happens when the cells fuse together,” Forgacs said. “Nature is smart enough to do the job.”

The study is being published in an upcoming edition of Tissue Engineering and was funded by a $5 million grant from the National Science Foundation. Forgacs also has become involved with a company, Organovo, Inc., which is interested in licensing the technology. He also plans to work with drug companies to provide them with tissues they can use to test drugs, prior to human clinical trials.

Currently, drugs are tested first on animals and then go through a human clinical stage. Because of the major differences in biological function, humans often have different reactions than animals. Forgacs believes that providing human tissue structures that resemble organs to the drug companies will make drug testing cheaper and much more efficient.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht Scientists Create New Map of Brain’s Immune System
18.02.2019 | Universitätsklinikum Freiburg

nachricht Forest Bird Community is endangered in South America
12.02.2019 | Humboldt-Universität zu Berlin

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>