Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cannabis a double-edged sword

24.10.2007
Potent anti-depressant in low doses worsens depression at high doses

A new neurobiological study has found that a synthetic form of THC, the active ingredient in cannabis, is an effective anti-depressant at low doses. However, at higher doses, the effect reverses itself and can actually worsen depression and other psychiatric conditions like psychosis.

The study, published in the October 24 issue of The Journal of Neuroscience, was led by Dr. Gabriella Gobbi of McGill University and Le Centre de Recherche Fernand Seguin of Hôpital Louis-H. Lafontaine, affiliated with l'Université de Montréal. First author is Dr. Gobbi's McGill PhD student Francis Bambico, along with Noam Katz and the late Dr. Guy Debonnel* of McGill's Department of Psychiatry.

It has been known for many years that depletion of the neurotransmitter serotonin in the brain leads to depression, so SSRI-class anti-depressants like Prozac and Celexa work by enhancing the available concentration of serotonin in the brain. However, this study offers the first evidence that cannabis can also increase serotonin, at least at lower doses.

Laboratory animals were injected with the synthetic cannabinoid WIN55,212-2 and then tested with the Forced Swim test – a test to measure “depression” in animals; the researchers observed an antidepressant effect of cannabinoids paralleled by an increased activity in the neurons that produce serotonin. However, increasing the cannabinoid dose beyond a set point completely undid the benefits, said Dr. Gobbi.

"Low doses had a potent anti-depressant effect, but when we increased the dose, the serotonin in the rats' brains actually dropped below the level of those in the control group. So we actually demonstrated a double effect: At low doses it increases serotonin, but at higher doses the effect is devastating, completely reversed."

The anti-depressant and intoxicating effects of cannabis are due to its chemical similarity to natural substances in the brain known as "endo-cannabinoids," which are released under conditions of high stress or pain, explained Dr. Gobbi. They interact with the brain through structures called cannabinoid CB1 receptors. This study demonstrates for the first time that these receptors have a direct effect on the cells producing serotonin, which is a neurotransmitter that regulates the mood.

Dr. Gobbi and her colleagues were prompted to explore cannabis' potential as an anti-depressant through anecdotal clinical evidence, she said. "As a psychiatrist, I noticed that several of my patients suffering from depression used to smoke cannabis. And in the scientific literature, we had some evidence that people treated with cannabis for multiple sclerosis or AIDS showed a big improvement in mood disorders. But there were no laboratory studies demonstrating the anti-depressant mechanism of action of cannabis."

Because controlling the dosage of natural cannabis is difficult – particularly when it is smoked in the form of marijuana joints – there are perils associated with using it directly as an anti-depressant.

"Excessive cannabis use in people with depression poses high risk of psychosis," said Dr. Gobbi. Instead, she and her colleagues are focusing their research on a new class of drugs which enhance the effects of the brain's natural endo-cannabinoids.

"We know that it's entirely possible to produce drugs which will enhance endo-cannabinoids for the treatment of pain, depression and anxiety," she said.

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>