Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study questions assumptions about human sensitivity to biological motion

19.10.2007
Humans may not be any more sensitive in detecting biological motion compared with nonbiological motion

Humans may not be any more sensitive in detecting biological motion compared with nonbiological motion, concludes a study recently published in Journal of Vision, an online, free-access publication of the Association for Research in Vision and Ophthalmology (ARVO).

Dr Eric Hiris of St. Mary's College of Maryland, (St Mary's City, MD, US) contends that although many papers on the subject begin with statements to the effect that humans are particularly sensitive in detecting point-light biological motion, little research has been performed that supports this.

Previous research in this area, according to Hiris, generally has failed to take into account form information in biological motion and/or has used masks that were less than optimal for biological motion.

Using point-light displays, Hiris's study, described in "Detection of biological and nonbiological motion," (http://www.journalofvision.org/7/12/4/) compared biological motion to nonbiological motion with and without an underlying form; equated the effectiveness of masks across displays; and presented targets of various sizes within a constant-sized mask area to determine if mask density predicted detection performance.

Hiris concludes that the resulting evidence does not show that humans are better able to detect biological motion if nonbiological motion contains an underlying form, and, in some cases, even if it does not.

"Do researchers sometimes state conclusions in ways that go beyond the data?" asks Hiris. "Specifically, what do researchers mean when they say we're 'highly sensitive' to some aspect of motion? These findings may highlight the need to be careful about how we couch our conclusions."

Joanne Olson | EurekAlert!
Further information:
http://www.journalofvision.org/7/12/4/
http://www.arvo.org

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>