Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study looks at mitochondrial variation in sperm traits and sperm competitive ability

21.09.2007
Study considered an important link in the field of sexual selection, where maternal inheritance of mitochondria may well have its greatest impact on sperm traits and competitive ability but thus far has been largely overlooked

University of Nevada, Reno researchers Jeanne and David Zeh of the Department of Biology have received a five-year, $650,000 grant from the National Science Foundation to investigate the effects of natural mitochondrial variation on sperm traits and sperm competitive ability.

Researchers have found mitochondrial mutations to be one of the primary causes of low sperm count and poor sperm mobility in humans. However, in the field of sexual selection, where maternal inheritance of mitochondria may well have its greatest impact, female-limited response to selection has been largely overlooked.

The Zehs’ study promises to fill in some of this knowledge gap in evaluating the importance of maternal inheritance of mitochondria for sexual selection and male adaptation. Mitochondria are the principal energy source of a cell, and convert nutrients into energy as well as performing many other specialized tasks.

The Zehs’ study, which will use a neotropical pseudooscorpion Cordylochernes scorpioides as a model system, will encompass whole-genome mitochondrial sequencing, a comprehensive analysis of the physiological and morphological characteristics of sperm that are likely to be important in competitive ability, a large-scale sperm competition experiment designed to identify the target of selection acting on sperm traits, and a replicated, multi-generation experiment in which the evolutionary response to selection on the trait most important in sperm competition will be assessed using both maternally- and paternally-based selection regimes.

Jeanne Zeh, an assistant professor of biology, and David Zeh, an associate professor of biology, both believe that their study will help refine the efforts to understand mitochondrial effects on male fertility.

“The fundamental insight that strict maternal inheritance of mitochondria constrains the ability of males to respond adaptively to selection has led to major advances in the study of human male infertility,” said Jeanne Zeh, the principal investigator for the study, noting that other studies have also investigated this phenomenon in laboratory mice and domestic fowl. “However, these studies have not assessed the effects of natural mitochondrial DNA variation on male fertility and sperm competitive ability.

“Clearly, more research is needed, particularly on natural populations not subject to the potentially strong effects of genetic drift associated with domestication.”

In addition to their research, the Zehs’ study also includes an interesting outreach component. They plan on working with a local AP biology teacher who will serve as a graduate research assistant on the project, and they will hold a series of workshops and seminars for other local high school science teachers and students that will promote the importance for society of basic research in ecology and evolution.

John Trent | EurekAlert!
Further information:
http://www.unr.edu

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>