Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study financed by the BBVA Foundation proposes a new universal rule to explain the equilibrium of plant

17.09.2007
A study financed by the BBVA Foundation and conducted by scientists Carlos Duarte, Nuria Agustì and Nuria Marbà from the Mediterranean Institute for Advanced Studies (CSIC – University of the Balearic Islands) has allowed the first-time formulation of a universal rule that explains the equilibrium of plant communities, showing how plants assure the survival of their species whether their lives last a day or are prolonged over centuries.

The research project, whose results will appear in the next issue of the U.S. journal Proceedings of the National Academy of Science, also concludes that the life span of these organisms may be sensitive to rises in temperature. According to the authors’ predictions, the mortality of plants could increase by 40% if land temperatures rise by up to 4ºC (the rate of increase projected for the 21st century by climate change prediction models).

The reasons why organisms cease functioning and die is still one of the big questions for science. Some trees live for centuries while the smallest herbs last no more than a few months. However, there is no real reason why herbs should not, in theory, live as long as trees, given that all photosynthetic organisms – plants – can live indefinitely in the absence of disturbances.

The authors of the BBVA Foundation study examined the mortality and population growth rates of 700 phototrophs, ranging from the very smallest – the cells of the marine photosynthetic cyanobacteria Prochloroccocus (just half a micrometer across yet responsible for a considerable fraction of marine photosynthesis) – up to the largest species of trees, in search of general rules conducive to an improved understanding of plant life span regulation.

The results of the study identify phytoplankton as the shortest lived beings, with a span of around one day, while some trees reach ages of a thousand years. This was possible thanks to a methodology developed by Susana Agustí, using techniques that have permitted the first ever quantification of the cell death of phytoplankton.

The authors show that the same basic rules govern the longevity and birth rates of plants, such that the brief life span of the microscopic phytoplankton cells is offset by the vertiginous birth rates of populations, while centennial tree populations register no more than sporadic births.

Their findings provide the key to a universal regulation of the life span of photosynthetic organisms with reference to plant size and the temperatures they grow at, and suggest that the mortality rates of phototrophs evolve to match population growth rates. A further conclusion is that plant mortality is of necessity highly temperature-sensitive, such that climate change will tend to accelerate the phototroph death rates which are an essential part of the food chain. As stated, the authors estimate that plant mortality could increase by 40% in the event of an up to 4ºC increase in land temperatures (the rate foreseen for the 21st century by most climate change prediction models).

The balance between longevity and birth rates in photosynthetic organisms is what keeps their populations stable. In the event of a serious mismatch between plant mortality and birth rates, these populations would either be driven to extinction (if death rates far exceeded births) or would outgrow available resources of light, water and food with the same inevitable result (in the case of births far exceeding deaths).

Javier Fernández | alfa
Further information:
http://www.fbbva.es

More articles from Studies and Analyses:

nachricht When a fish becomes fluid
17.12.2018 | Institute of Science and Technology Austria

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>