Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avocados may help prevent oral cancer

06.09.2007
Nutrients taken from avocados are able to thwart oral cancer cells, killing some and preventing pre-cancerous cells from developing into actual cancers, according to researchers at Ohio State University.

Researchers found that extracts from Hass avocados kill or stop the growth of pre-cancerous cells that lead to oral cancer. Hass avocados are year-round fruits known for their distinctive bumpy skin that turns from green to purplish-black as they ripen.

While there are more than 500 varieties of avocados grown worldwide, Hass avocados are the most readily available at supermarkets nationwide. Similar research has not been conducted on other varieties of avocados.

The findings are published online in the journal Seminars in Cancer Biology.

Lead author Steven M. D'Ambrosio, a member of the molecular carcinogenesis and chemoprevention program at Ohio State's Comprehensive Cancer Center, also wrote an accompanying editorial for the journal, discussing the cancer-fighting potential of fruits and vegetables. D'Ambrosio collaborated with Haiming Ding in Ohio State's College of Medicine.

Studies have long associated the consumption of fruits and vegetables with a reduced risk for various types of human cancer. The protective effect is attributed to the high levels of phytonutrients or phytochemicals – plant compounds thought to have health-protecting qualities – that are often found in dark colored fruits and vegetables.

“As far as we know, this is the first study of avocados and oral cancer,” says D'Ambrosio. “We think these phytochemicals either stop the growth of precancerous cells in the body or they kill the precancerous cells without affecting normal cells. Our study focuses on oral cancer, but the findings might have implications for other types of cancer. These are preliminary findings, and more research is needed.”

D'Ambrosio, who collaborated with researchers in Ohio State's College of Pharmacy, found that phytochemicals extracted from avocados target multiple signaling pathways and increase the amount of reactive oxygen within the cells, leading to cell death in pre-cancerous cell lines. But the phytochemicals did not harm normal cells.

“These studies suggest that individual and a combination of phytochemicals from the avocado fruit may offer an advantageous dietary strategy in cancer prevention,” says Ding, who is a member of the division of radiobiology, department of radiology.

Avocados are chock-full of beneficial antioxidants and phytonutrients, including vitamin C, folate, vitamin E, fiber and unsaturated fats. They are naturally sodium-free, contain no trans fats and are low in saturated fat, making them a healthy addition to any diet, D'Ambrosio says.

“The future is ripe for identifying fruits and vegetables and individual phytonutrients with cancer preventing activity,” writes D'Ambrosio in the journal's editorial. “As we identify the molecular mechanisms and targets by which individual phytonutrients prevent cancer, we may be able to improve upon nature by formulating phytonutrient cocktails for specific cancers and individual susceptibility and risk.”

Other Ohio State researchers involved in the study are Young-Won Chin in the College of Pharmacy and A. Douglas Kinghorn in the Comprehensive Cancer Center. The California Avocado Commission provided the Hass avocados for the research.

Eileen Scahill | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>