Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last minute rethink

22.08.2007
Neuroscientists at UCL (University College London) and Ghent University have found the brain circuit involved in thinking twice and checking impulsive behaviour. The duo discovered that an area in the fronto-median cortex of the brain is activated when you begin to think ‘I’m not going to go through with this’ and stop yourself doing what you were about to do.

According to the study, published in the ‘Journal of Neuroscience’ today, this specific brain network is involved in self-control and checks and limits our desired actions.

Professor Patrick Haggard, UCL Institute of Neuroscience, said: “Many people recognise the ‘little voice inside the head’ that stops you from doing something, like pressing the send button on an angry email. We all have choices in our daily life, and we may decide not to go ahead with something we’ve planned. Quite often we have an immediate desire to perform an action, but reflecting on the wider consequences could, and sometimes should, make us cancel the action. Our study identifies the brain processes involved in that last-minute rethink about what we’re doing. These brain functions are important for human society in general: the ability to withhold an action prevents us all from being egoists, driven by our immediate desires.”

The decision you make on whether to act or not in a given situation is crucial to everyday life. Past studies have focussed on people’s ability to cancel a prepared action in response to an external signal, like a stop sign. In this study, for the first time, the participants always prepared the action, but then decided for themselves whether to go through with the action, or whether to withhold it at the last minute. This allowed the scientists to identify the brain basis of self-initiated inhibition of action.

Brain activity in the fronto-median cortex was monitored using fMRI brain-imaging while volunteers made up their minds when to push a button. Prior to the test participants were asked to change their minds occasionally by deciding against pushing the button at the last minute.

Participants were asked to indicate when they began to prepare the action by reporting the position of a clock hand. This indicated to the scientists when the inhibitory brain activity was likely to occur, on those occasions when the participants withheld the action. A small area in the anterior fronto-median cortex of the brain was active only when people inhibited an action they had previously prepared. When people prepared and actually went through with the action, this area was considerably less active.

“We wanted to identify the brain areas that show more activity when people prepare an action and then inhibit it, than when they prepare the same action and then actually make it” said Dr Marcel Brass, Ghent University.

The researchers were even able to predict to some degree how often individual volunteers inhibited actions from the brain activity in the fronto-median cortex. Those with strong activity in this area withheld actions frequently, while those with weak activity pressed the button more frequently, despite the instruction to sometimes withhold action.

Professor Haggard said: “This could be a factor in why some individuals are impulsive, while others are reluctant to act. Developments in brain imaging are bringing us ever closer to a scientific understanding of why a particular individual is the way they are. The ability to check, reconsider and withhold an action is essential given the complex social settings in which we live.”

Alex Brew | alfa
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>