Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study begins to reveal clues to the cause and progression of sepsis

14.08.2007
Findings from University of Pittsburgh School of Medicine study of sepsis published in Archives of Internal Medicine

Not all patients with sepsis mount the same immune response, even when they look the same clinically, according to findings from the first large-scale natural history study of sepsis. The results, published by University of Pittsburgh School of Medicine researchers in the August 13/27 issue of the Archives of Internal Medicine, indicate that past interpretations of how the immune system responds to infection – interpretations on which many experimental treatments were based – were incorrect.

This year, nearly 1 million Americans will develop sepsis, a result of the body’s inflammatory response to an infection, which can lead to organ failure and death. More than 30 percent will die, making sepsis the 10th leading cause of death. While incidence rates of sepsis have been steadily increasing over the years, little is known about the condition. Past investigational treatments have been based on data from small studies, and most of these therapies have failed.

Researchers at the University of Pittsburgh believe that these treatments failed, at least in part, because of insufficient data to fully understand the complexity and variability of the inflammatory response to sepsis. To gain a better understanding into the mechanisms behind the condition, the researchers conducted the Genetic and Inflammatory Markers of Sepsis study (GenIMS), which collected extensive clinical and laboratory data geared to help analyze the risks of a person developing sepsis and dying. Data were collected from 2,320 subjects who came to hospital emergency rooms at 28 sites nationwide.

“With sepsis, we’re dealing with one of the deadliest diseases, yet we know so little about the condition. The situation is similar to what this country experienced over 50 years ago with heart disease and stroke – we knew that too many people were dying of cardiovascular disease, but we didn’t know enough about the disease to effectively treat and prevent it,” said Derek C. Angus, M.D., M.P.H., professor and vice chair of research, department of critical care medicine, University of Pittsburgh School of Medicine. “In response, the National Institutes of Health embarked on the Framingham Heart Study, the results of which have influenced everything we know about the prevention and treatment of cardiovascular disease. With our study, we’re hoping to do the same for sepsis, providing a greater understanding of the disease on which future treatment and prevention strategies can be based.”

For this analysis, researchers evaluated data from 1,886 of the study participants who were hospitalized with community-acquired pneumonia (CAP), the leading cause of severe sepsis. More than 30 percent of the subjects developed severe sepsis, of whom 26 percent died.

To determine the inflammatory response in the participants with CAP, the researchers measured cytokine levels daily for the first week of hospitalization and then weekly thereafter. They found that 82 percent of the participants with CAP had elevated cytokine levels. Levels were highest when the subject presented at the emergency room, tapered down over the first few days, but remained elevated throughout the first week of hospitalization – even after the clinical signs of infection had subsided. Levels were highest in those with fatal severe sepsis, lowest in those with CAP but no sepsis.

“Our data show that much of what we previously thought about the role the inflammatory response plays in sepsis was wrong or incomplete. We had thought the inflammatory response to infection was relatively short-lived, just a few days, and that it was similar in patients with similar clinical signs. Instead, we found that the inflammatory response was extremely variable across patients—more than 50-fold differences were seen in some markers. Additionally, we found that the inflammatory response extends past the outward symptoms, far longer than previous data would suggest, and far longer than the courses of therapies used in unsuccessful clinical trials of experimental agents,” said John A. Kellum, M.D., professor, department of critical care medicine, University of Pittsburgh School of Medicine. “We also found that the difference between the inflammatory response in a patient with a good outcome and a patient with a bad outcome is only a matter of degree.”

The Pitt researchers say that in light of their results, treatments that completely abolish a specific component of the inflammatory response would be ineffective, and could be dangerous, since the inflammatory response is needed to address the underlying infection. Instead, they believe that therapies that address the chronic inflammatory response after sepsis and those that act more broadly on multiple components may yield better results.

“No one really knows why some people develop sepsis following an infection,” said Scott Somers, Ph.D., who oversees sepsis grants at the National Institute of General Medical Sciences, which partially funded the work. “This large study gives us a much clearer picture of sepsis—and shows us that it’s even more complicated than we thought.”

The researchers plan to release several other reports from the GenIMS study in the coming months, which they hope will provide more clues to the condition.

Jocelyn Uhl Duffy | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>