Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PET scan shows during treatment if radiation is shrinking lung tumor

19.07.2007
Finding suggests treatment could be changed early if tumor not responding

Lung cancer patients may not need to wait till their radiation treatment is over to know if it worked. A PET scan several weeks after starting radiation treatment for lung cancer can indicate whether the tumor will respond to the treatment, according to a new study by researchers at the University of Michigan Comprehensive Cancer Center.

Traditionally, PET, or positron emission tomography, has been used after radiation treatment for lung cancer to assess whether the tumor responded to treatment and whether the patients will have a chance of being cured. Using PET several weeks into treatment, researchers found a strong correlation between tumor responses during treatment and response three months after completion of the treatment. This could potentially allow doctors to change the radiation treatment plan before treatment ends to improve the outcome.

Results of the study appear in the July 20 issue of the Journal of Clinical Oncology.

“This demonstrates that PET scans can be performed earlier during the course of radiation treatment, which will allow us to modify the treatment regimen before the treatment is completed. Our sample size was small, but the results are very promising,” says lead study author Feng-Ming Kong, M.D., Ph.D., assistant professor of radiation oncology at the U-M Medical School.

In a pilot study of 15 people with early-stage non-small-cell lung cancer, researchers administered FDG-PET scans before beginning radiation therapy, three to four weeks into treatment and three months after completing treatment. An FDG-PET scan uses radioactive labeled glucose, which is drawn to cells that are being metabolized quickly. If a tumor is responding to radiation treatment, it would show decreased FDG activity in the cells.

The concern in the past has been that normal lung tissue reacts to the radiation and may be in the way of determining through PET scan whether the tumor is shrinking. Kong’s study found this was not an issue.

“The confounding effect on normal tissue is not as significant during treatment as it is after treatment, which is a big surprise. This is the part I’m most excited about: The confounding effect is actually more remarkable after the treatment. That’s counter to our traditional assumptions. We always assumed the confounding effect would be worse during treatment,” Kong says. She says this finding makes sense, as normal lung tissue is slow to react to the assault of radiation therapy and typically there is a delay before lung inflammations or other problems develop.

“The PET scan is better to perform during the course of treatment instead of months after treatment. It avoids the normal tissue confounding effect and allows the radiation therapist to modify the doses if necessary,” Kong says.

The researchers are continuing to study PET scans in a larger number of patients to verify the pilot findings. The next step is to assess whether changing the treatment regimen based on mid-treatment PET scan findings would lead to better tumor control and survival rates. If continued studies bear out the initial data, Kong is hopeful this work could eventually lead to a change in standard practice guidelines regarding PET for lung cancer.

Nicole Fawcett | EurekAlert!
Further information:
http://www.mcancer.org

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>